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Preface 

This volume contains material associated with the presentations at the Fourth Interna- 
tional Workshop on Designing Correct Circuits, to be held on April 6*'* and 7*'', 2002, in 
Grenoble, Prance. The workshop is a satellite event of the ETAPS group of conferences. 
Previous workshops in the informal DCC series were held in Oxford (1990), Lyngby (1992), 
and Bastad (1996). These meetings were all very stimulating events, and each made a 
contribution to building our research community. 

The 2002 DCC workshop again brings together academic and industrial researchers 
in formal methods for hardware design and verification. It will allow participants to 
learn about the current state of the art in formally-based hardware verification and it is 
intended to spark debate about how more effective design and verification methods can 
be developed. 

Much research in hardware verification now takes place in industry, rather than in 
academia. For the long term survival of our field, we must ensure that academics and 
industrial researchers continue to work together on the real problems facing microprocessor 
designers and those developing System on a Chip solutions. A major aim of the workshop 
is to open the necessary communication channels. With the speakers that DCC 2002 has 
attracted, it seems likely that the debate will be lively and productive! We look forward 
to two great days. 
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Abstract: Constraint-Based Verification 
Authors: Carl Pixley (Synopsys Inc.) Ken Albin and John Havlicek (Motorola Inc.) 

introduction 

Constraint-Based Verification, Yuan et al. [0], [1], Shimizu et al. [2], [3], Shiple et al. [4] lias 
proven to be a practical approacii to verification at tiie nriodule, blocl< and unit levels of 
fiardware design and reused hierarctiically at higher levels of design. The technique is to 
define a set of Boolean constraints, referencing any nets in the design or monitors (i.e., 
auxiliary deterministic finite state machines), to act as an "environment' for a Design 
Under Verification (DUV). Since constraints are not "fonward looking", they can be used to 
generate inputs to the design. Stimulus generation can be done efficiently and on-the-fly 
during simulation. Since constraints do not involve fake random inputs (i.e., auxiliary free 
variables), they can also be used to monitor Inputs to the design efficiently and during 
simulation. For fonnal verification, constraints can be used as a model of the environment 
of the design for the purpose of model checking, Kaufmann et al. [5]. 

Nice properties of a constraint-based verification system: 

There is a duality between constraint-based simulation generators and monitors as w/ell as 
between constraints as assumptions and as proof obligations. Boolean constraints can 
easily support both identities. This implies that constraints developed to be simulation 
generators for a DUV can easily become obligations for neighboring blocks during block- 
level verification and during integration. In addition, constraints developed to generate 
inputs for bus interface unit can be converted to monitors to verify the outputs of the same 
bus unit. This happened in the development of the Rapid-l/0 bus interface module, 
exposing previously unknown bugs. Constraint-based monitors were also used to find 
bugs in a PCI bus protocol itself [2]. The multiple roles of constraints support reuse of 
information in a fundamental way. By contrast, conventional testbench stimulus drivers 
are usually discarded during integration verification. Constraints are normally delivered to 
the consumer of Intellectual Property (IP) to be used during IP integration. 

Constraints can be developed incrementally and inexpensively as the design matures. In 
the earliest stages of design simple constraints can be used to animate the design almost 
effortlessly and waveforms can be observed. In our experience, designers have found 
bugs at the earliest stages of design, even before assertions (i.e., properties, checkers) 
were written. Also, no elaborate, expensive testbench is needed to perfonn constraint- 
based simulation. Therefore, designers can use constraints directly without the need for 
verification specialists. In addition, the development of constraints is amortized over time. 
There is no one-time, up front cost for developing constraints, as is common with 
testbench programs. 

Of course as the design develops, the input constraints have to become accurate. This is 
accomplished by the generation of false negatives by either the simulation or fonnal 
engines. It is possible for constraints to be too 'lighf in which case the constraints will be 
obsen/ed to fail when they are "flipped" to become checkers (i.e., obligations for 
neighboring blocks) during system integration. If constraints are too "loose," an expected 
property may fail in simulation or formal verification. An additional benefit of the constraint- 
based simulation approach is that constraints formally document the interfaces to DUV's in 
a machine-readable way. 



Constraint-based verification can be easily integrated into an existing simulation 
methodology, e.g., directed or directed-random simulation. This is an important practical 
consideration when trying to get a new methodology into existing design groups. Design 
groups are generally very conservative. They tend to stick with known methods. It is 
unlikely that they will adopt a new methodology if it Is radically different from existing 
practice or if it is very expensive to integrate. The way constraint technology can be 
integrated into an existing simulation-based methodology is to develop constraints as 
checkers for existing, testbench generation programs. Then, when the constraints are 
mature they can flip to become generators. Of course, one of the added side benefits is 
that with constraints, one can formally model-check the DUV. 

Constraint-based simulation is unexpectedly effective in finding bugs. "Comer cases" are 
found earlier. Empirical evidence for this is one design project in which constrained 
random simulation {C++ based) was used by a team of half a dozen people over a period 
of ten months finding only one design bug, while a single person used constraint-based 
simulation for only two months and found six (!) bugs confirmed by designers. 

Constraint-based verification can be put directly in the hands of designers, rather than 
verification wizards, at the module, block and unit levels of design. This implies a much 
broader user-base for verification tools and technology. Furthermore, constraints certainly 
have all the benefits of an assertion-based methodology. For example, embedded 
constraints as checkers are left in the design as booby traps, which locate and isolate 
bugs to a particular site for easier diagnosis. It is worth noting that the language of 
constraints should be something familiar to designers, such as the Verilog expression 
language, in order to be adopted more readily. To be direct, the design community more 
readily adopts familiar languages. 

Simple Constraint Examples: 

Assume the following bus interface unit. Attached are two simple constraints on the 
interface to the unit: the environment is not allowed to a request for a request id when one 
Is active and the type of a transaction must not be 5 or 7. 

Constraint Example 

Request 

Reqjd[0:l]    ■ 

Req_lype[0:2]' 

Req_prio[0:l] 

Response 

Resp_id[0:l] 

•Resp_type[0:l] 

Assume: A reqiiesl iiuiv he gi\ eii only if ils itloiiliner is iiol equal lo 
the identilier olanv active Iransaeliou. 

stiwests 

module xyz; 

r Definitions Block V 



activate(id[0:1])[0:0] = request & (req_id = id); 
deactivate(id[0:1])[0:0] = response & (respjd = id); 
active_next(id[0:1])[0:0] = 

( 
deactivate(id)?1'bO   : 
activate(id)  ?1'b1     : 

active[id] 

varactive[0:15] = 
{ 

active_next(0), 
active_next(1), 
active_next(2), 
active_next(3), 

}; 

Constraint: A request may be given only if its identifier is not equal to the identifier of any 
active transaction 

constraint(request ? ~active[reqjd]: 1'bl); 

Constraint; The type of a request should never be 5 or 7. 
constraint(request ? {(req_type != 5) & (req_type != 7)): 1 'b1); 

endmoduie 

SimGen Constraint Generation 

Simulation generation from constraints a la SimGen [2] works very simply. At compile time 
the user supplies a set of constraints to the SimGen compiler. The constraints are 
compiled either into a Verilog module [4] or into a C program [1] that runs during 
simulation. During simulation a user can give a set of biases to the runtime program to 
control the likelihood that an input bit will get set to 1 The user can also set an initial state 
using Verilog directives or can give the design a synchronizing sequence. At any point the 
user can call a SimGen task, which turns the simulation over to the SimGen executable. 
After that point SimGen generates simulations compliant with the constraints and biases 
every clock cycle. 

There is a logical (and very real) possibility that the simulation will encounter a deadend 
state, i.e., a state for which there is no solution for the inputs. At that point the simulation 
will stop and the offending trace will be generated. 
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Unifying Traditional and Formal Verification 
through Property Checking 

Harry Foster 
harry@verplex.com 

Verplex Systems, Inc 

Extended Abstract 

In verification, there is no "silver bullet". However, verification methodologies can be improved with more 
effective techniques that include a combination of traditional simulation, semi-formal bug-hunting techniques, 
and formal property checking. The uni'fying factor, and necessary ingredient, behind successfully combining 
traditional with formal verification is property specification (combined with methodology considerations). 
This presentation explores property-checking techniques that were used to achieve functional closure (that is, 
ensured that a design met its functional specification, from RTL implementation to final layout) on a Hewlett- 
Packard highend server ASIC project. The presentation initially explores simulation and formal property 
checking used within a functional verification methodology. Then, the presentation will demonstrate how to 
combine formal property checking with logical equivalence checking. The combination of these techniques 
ensures that both semantic and logical consistency is preserved during design transformations. 

Enhancing Functional Verification with Property Checking: Property specification continues to be 
problematic, partially due to the lack of a standard property language, but compounded by a lack of 
commercial tool support for specification-driven verification. Currently, Accellera (see www.accellera.org)— 
whose mission is to drive worldwide development and use of standards that enhance a language-based design 
automation process—is addressing the former. It is in the process of adopting a formal property language 
through the efforts of its Formal Verification Committee (see www.eda.org/vfv). Two of the formal property 
languages under consideration for standardization are the Motorola CBV and the IBM Sugar. These powerful 
and expressive formal property languages will enable engineers to: 

• specify properties and constraints for formal analysis (for example, property checking) 
• specify functional coverage models to measure the quality of simulation 
• develop pseudo-random constraint-driven simulation environments derived from formal 

specifications [Yuan, et al. 1999] 

When unifying traditional and formal verification, developing an effective methodology is equally as 
important as the property languages (and formal tools). That is, standardizing a property language, is not the 
entire solution. Recently, monitor-based methodologies have emerged as a mechanism for unifying traditional 
and formal verification (for example, FoCs-Automatic Generation of Simulation Checkers from Formal 
Specification [Abarbanel, et al. CAV 2000]). Other approaches include creating a protocol bus-monitor that 
examines an agent's output signals (as the monitor's input) and generates a Boolean correcti onVpui signal, 
which is true when agent i is compliant to the specification (for example, Monitor-Based Formal Specification 
of PCI [Shinmizu et al. FMCAD 2000] and A Specification Methodology by a Collection of Compact 
Properties as Applied to the Intel Itanium Processor Bus Protocol [Shimizu et al. CHARME 2001]). 



In this presentation, the author presents his own experience with a monitor-based technique for specifying 
RT-level implementation properties, using the Open Verification Library set of assertion monitors [Foster and 
Coelho HDLCON 2001]. Data will be presented comparing two similar highend server ASIC design 
projects—one with a monitor-based approach to specifying RTL implementation assertions and one without 
monitors. The monitor-based methodology consisted of over 4000 RT-level implementation assertions and 
over 8000 RT-level functional coverage points (using the same monitor-based form of specification). The 
monitor-based approach significantly reduced simulation debug time compared to the non-monitor-based 
approach (15 minutes, on average, compared to hours). Furthermore, the methodology demonstrated how the 
same form of specification could be leveraged across multiple verification process (for example, 
direct/random simulation, semi-formal verification, and formal verification). The monitor specifications 
succeeded in identifying 85% of all recorded bugs (15% were identified by other techniques). 

Enhancing Equivalence Checking vpith Property Checking: Transformation verification, using formal 
combinatorial equivalence checking, has become mainstream for design projects over the last few years. 
Although the techniques are extremely useful for ensuring logical consistency, thus minimizing the need for 
gate-level simulation, it is not a complete solution for verifying equivalence. Designers must be aware of a 
class of functional bugs that cannot be demonstrated on the RTL model due to optimistic behavior of X in 
RTL simulation. Furthermore, many synthesis pragmas, such 2&fiill_case and parallel_case create semantic 
inconsistency (and potential synthesis bugs) between the pre-synthesis and post-synthesis designs. Gate-level 
simulation is required to identify the problem—yet the two circuits will prove logically equivalent. 

Although it would be desirable to enforce a restricted coding style to prevent semantic inconsistencies 
[Bening and Foster 2001], this is not always possible—particularly when integrating in IP or coding to solve 
timing issues. However, property checking can be applied to ensure safe usage of X and synthesis pragmas 
within the RTL. 

The following Verilog code illustrates one form of semantic consistency problem associated with a.full_case 
synthesis pragma. 

module mux (a,b,s,q); 
output      q; 
input      a, b; 
input [1:0] s; 
reg q; 
always @(a or b or s) begin 

case (s) //rtl_synthesis  full_case 
2'bOl: q = a; 
2'blO: q = b; 

endcase 
end 

endmodule 

Pre- versus post-synthesis semantic inconsistency occurs when an error in the logic driving the "s" variable 
generates a value other than the alternatives 2'bOl and 2'blO. For the pre-synthesis simulation behavior, if 
"s" assumes an illegal value (for example, 2'bll, 2'bOO, or 2'bXX), then the "q" variable incorrectly 
behaves as a latch in RTL simulation—holding its previous valid value. However, the post-synthesis model 
contains no latch. This causes a prospective pre- versus post-synthesis simulation difference, which means 
that a functional bug could be missed during RTL simulation; whereas, this same bug could be uncovered 
during gate-level simulation (for logically equivalent circuits). Of course, our goal is to minimize the gate- 
level simulation bottleneck. Hence, formal equivalence checking is only a partial solution; since it doesn't 



ensure semantic consistency. However, formal property checking helps us in these cases by verifying that the 
condition resulting in an X assignment would never occur (or would never be observed). Furthermore, 
property checking ensures that conditions specified by a synthesis pragma are not violated. For example, on 
the Hewlett-Packard highend server project, synthesis pragma violations were identified on the IP and 
corrected prior to synthesis using formal techniques. 

Conclusion: Using a systematic monitor-based library of checkers to verify general design RT-level 
implementation properties, as well as validate semantic consistency during equivalence checking, has proven 
beneficial in unifying traditional and formal verification on actual design projects. Time-to-market reduction 
has been clearly demonstrated through reducing the debug time associated with traditional verification and 
identifying very complex bugs using semi-formal and formal verification. 

Thoughts for academia: Based on experience in trying to integrate property checking techniques into both a 
traditional and formal verification flow, future research is desirable in the area of coverage associated with 
formal proofs (particularly related to bounded proofs). And, creating metrics that articulate coverage in a form 
that the designer or traditional verification engineer can relate to is also needed (for example; path coverage, 
toggle coverage, line coverage, etc.). Finally, hierarchical partitioning of RT-level proofs, while 
automatically deriving sub-block constraints based on witness generation, would be an interesting and 
potentially beneficial area of research for automation. 
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Lava: An Embedded Language for Structural Hardware 

Design 

Koen Claessen, Mary Sheeran, and Satnam Singh 
{koen,ms}@cs. Chalmers. se, Satnam. Singh@xilinx. com 

Introduction 
Lava is a tool to assist circuit designers in specifying, designing, verifying and 
implementing hardware. It is realised as an embedded language - a collection of 
libraries written in an already existing language, called the host language. These 
libraries provide the hardware designer with basic building blocks for creating 
circuit descriptions. In the case of Lava, the host language (the glue to put 
the building blocks together) is the modern functional programming language 
Haskell [2]. 

In the talk, we argue in favour of the embedded language approach we have 
taken. The power of our approach comes from the fact that circuit descriptions 
in Lava are first-class objects in Haskell. This means that: 

Circuit descriptions can be generated. We can write functions, that, 
given some parameters, generate a circuit. We can for example use lists and 
recursion to describe generic or size-independent circuits. 

Circuit descriptions can be passed around as parameters.    We can 
write functions that take circuits as parameters, and combine them to produce 
new circuits. We call these connection patterns. 

Circuit descriptions can be analysed and transformed. We can define 
functions that inspect the structure of a circuit and generate a result. An ex- 
ample of this is a longest combinational path analysis. The result of such a 
function can also be another circuit, allowing us to define circuit transforma- 
tions. Examples of this are retiming transformations. 

Apart from the usual advantage that higher-order functions bring in pro- 
gramming, namely high-level code reuse, we get one more advantage from them 
in Lava: We can also give our connection patterns a layout semantics. For ex- 
ample, serial composition, written as ->-, takes two circuits, and produces one 
circuit which feeds its input to the first circuit and the corresponding output to 
the second. In addition, the layout semantics says that the first circuit should 



be laid out to the left of the second. Using a small amount of layout-aware con- 
nection patterns, and recursion, we are able to concisely describe very complex 
circuit layouts, such as butterfly networks [1]. 

Circuit descriptions can be processed in several different ways. We can sim- 
ulate circuits, by running the Haskell functions corresponding to circuits on real 
inputs. We can also symbolically evaluate circuit descriptions, by instantiating 
parameters and providing symbolic inputs, to produce a low-level description 
of the circuit in another language. Thus, we can generate structural VHDL or 
EDIF, giving a route to implementation on a Field Programmable Gate Ar- 
ray (FPGA), as well as access to a variety of standard circuit analysis tools. 
Furthermore, we have equipped the Lava system with a property description 
language, with which we can describe properties about the circuits. Again, we 
use symbolic evaluation to generate logical descriptions of the circuits, which 
we can feed to a wide range of external model checking tools and automatic 
theorem provers. The output of these tools can be read back in, providing a 
way of scripting verification strategies from within the Lava system. 

The work on Lava started several years ago, and has gone through a number 
of major revisions, but now we feel we have come to a point where a final design 
of the system can be presented. We have built a complete system in which real 
circuits can be described, verified, and implemented; it allows elegant circuit 
descriptions, formal and informal reasoning about the circuits, and a route to 
fast implementations on FPGAs. Future enhancements to the system are likely 
to be in the form of extensions to the embedded language, which will in turn 
demand new analysis methods. Lava has been used at Xilinx to design a wide 
range of circuits, such as several constant coefficient multiplier core generators 
for making high speed fully placed multipliers for use in graphics and signal 
processing applications, 2D convolvers for use in real-time 2D image correla- 
tion, sorting cores for calculating median values in image processing circuits, 
and distributed arithmetic implementations of trigonometric functions like sine, 
cosine etc. as well as filter functions. 

To illustrate how designing in Lava can be very different from designing 
in a conventional hardware description language, we present the example of a 
constant coefficient multiplier (KCM) core targeting to Xilinx's Virtex FPGAs. 
By core we mean a generic (or parameterisable) circuit that efficiently performs 
high speed multiplications with predictable timing and regular floorplan. Such 
circuits are difficult to describe in a language like VHDL because it lacks several 
important features: 

• In VHDL, circuits cannot be passed as parameters and returned as re- 
sults;VHDL is not higher order. In Lava, the fact that the language is 
higher order allows us to construct a constant coefficient multiplier core 
by computing a circuit that depends on the constant coefficient. 

• In VHDL, one cannot easily compose circuits together algorithmically. In 
Lava, we can produce a constant coefficient multipHer core with a variety 
of parameters (e.g. sizes of inputs, signed/unsigned data specification, 
registering options) by implementing an algorithm that determines which 



specific architecture is best suited for a given instance. It is possible to 
write such descriptions in VHDL but many core developers resort to writ- 
ing core generators in conventional programming languages like C and 
Java to generate VHDL or Verilog for a specific instance. Our approach 
has one language and description which is effective for describing both 
circuits and algorithms that compute circuits. 

• In languages like VHDL, there is no standard and flexible mechanism for 
describing circuit layout. Specifying a good layout for a core allows perfor- 
mance to be tuned and predictable and also allows a core to have a regular 
floorplan, which makes it easier to use in a larger system. Lava provides 
a very flexible and powerful layout mechanism, intimately associated with 
the combinators that compose behaviour. 

New hardware description languages like SystemC rectify some of the inflexi- 
bilites of conventional hardware description languages like VHDL and Verilog. 
For example, in SystemC, it is much easier to algorithmically compose structural 
circuit descriptions, since the full power of the C++ language is available. In 
SystemC, one can also exploit the template mechansim (which provides a more 
flexible form mechanism for specifying generic circuits than that in VHDL) and 
inheritence toproduce more general and extensible circuit descriptions. How- 
ever, the features for supporting general descriptions in Lava (namely higher 
order functions and the polymorphic type system) are far stronger than their 
equivalents in SystemC and there are still many types of circuit descriptions 
which are elegantly rendered in Lava, but would be cumbersome in SystemC. 
Furthermore, there is still no standard mechnaism for describing circuit layout 
in SystemC. 

The constant coefficient multiplier core 

The constant coefficient multiplier core works by performing several 4-bit multi- 
plications, the results of which are combined in a weighted adder tree to produce 
the final product. This is an efficient architecture for 4-input look-table based 
FPGAs since a 4-bit multiplication can be realized effectively with a look-up 
table. A block diagram of such a multiplier is shown in Figure 1. This KCM 
multiplies an 11-bit signed dynamic input A = aio ■.. ao by an 11-bit constant 
coefficient K. The multiplication AK is performed by composing the results of 
several four-bit multiplications i.e. AK = —2^aio...8-K^ • ■ ■ + 2'*a7...4X + a3_„oK. 

The rightmost table multiplies the lower four bits of the inputs by the K 
constant coefficient i.e. X = a3,„oK and the middle table computes Y = a7„AK 
where both 03...o and 07...4 are treated as unsigned numbers. The leftmost table 
calculates Z = {aio,aio,aQ,as)K where {aio, 0.10,0,9, as) is treated as a sign- 
extended bit-vector. To calculate the final results, the partial products Y and 
Z have to be appropriately weighted before addition. A weighted adder tree is 
used to compose the partial products and the size of the intermediate adders 
is reduced by reading off directly the bottom four bits of the partial product 
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Figure 1: The structure of a constant coefficient multiplier 

X and the result of adding the remaining bits of X to Y. For the pipelined 
version of this multiplier, we again exploit our ability to calculate circuits to 
place registers on the intermediate wires, making sure to balance the delays. 

The adders in our KCM design are simply described by parameterised op- 
timised adders from the Lava arithmetic library. But how should one describe 
the look-up tables for the 4-bit multiplications? The beauty of Lava is that we 
can write an generator circuit that takes as input an arbitrary Haskell function 
that maps any value that can be represented to a single bit and returns the cor- 
responding look-up table circuit realisation of that function. Here, we have an 
example of mapping a circuit from one high level representation in our language 
to another more detailed representation (of the implementation) in the same 
language, with the algorithm for performing this mapping also being written in 
the same language. 

The specific function that is used in the KCM implementation is called 
roml6x and has the following Haskell type: 

roml6x Int ->  [Int]  ->  (Bit, Bit, Bit, Bit)  -> Bit 

The function takes a size argument specifying the size of the table, a list of 
numbers to be represented by the table and a four bit value that at run-time 
determines which value of the table is present at the output. A function that 
performs a 4-bit constant coefficient multiplication can be represented by such a 
circuit builder since it can be realised as a table look-up of integer values using 
a 4-bit index. 

Using the romlSx higher order circuit builder, we can define an unsigned 
four bit constant coefficient multiplier core as: 



unsignedFourBitKCM ::   Int ->   [Bit]   ->   [Bit] 
unsignedFourBitKCM coeif addr 

= romiex maxwidth multiplication.results padded_addr 

where 
padded_addr = padAddress addr 
nr.addrs = length addr 
multiplication_results 

= pad.width 0 16  [coeif * i   I   i <-  [0..2"nr_addrs-l]] 

maxwidth 
= maximum 

(map unsignedBitsNeeded multiplication.results) 

The calculation of the constant coefficients is represented directly in Haskell 

by the expression 

[coeif * i   I   i <-  [0..2~nr_addrs-l]] 

This expression cycles i through every value that can be represented using the 
given number of address bits and computes that value multiplied by the con- 
stant coefficient. This illustrates how Lava provides a multi-level language. At 
the highest level, one can write expressions using the full power of the Haskell 
programming language. At the next level, one can write aribitrary Haskell ex- 
pressions to transform such expressions (in this case by exhuastive simulation) 
into a domain specific representation (combinators and primitive circuit ele- 
ments represented in the core Lava language). The remainder of the definition 
computes the details of word-lengths. 

An unsigned KCM can be made by using several 4-bit unsigned KCMs as 

follows: 

• The input bus is chopped into groups of 4-bits. This is achieved using the 
chop list function. 

• Each of these 4-bits is multiplied by the constant coefficient using the 
unsigedFourBitKCM circuit. This can be easily done by the expression 
hmaP (unsignedFourBitKCM coeif) which places the 4-bit KCMs next 

to each other. 

• The results of each of these partial products have to be suitably weighted 
to allow them to be combined. This is done by zipping the partial products 
bus with the list [20, 24, 28...] 

• A weighted adder tree is used to sum the partial products. Combinational 
and pipelined KCMs will have different adder trees but we would like to 
abstract over this difference so that one generic unsigned KCM function 
needs to be written. This can be done by passing the required adder tree 
circuit as parameter. 

• The output of the weighted adder tree circuit is a pair which has 20 as the 
first element and the final product as the second element. Since we only 
want the product we just use the snd function to project it out. 
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Figure 2: Architecture and Layout of an unsigned KCM 

In Lava the steps described above can be represented by the following code: 

unsignedKCM adderTree coeif 
= chop 4 >-> 

hmaP (unsignedFourBitKCM coeif) >-> 
insertWeights >-> 
adderTree >-> 
snd 

This architecture is illustrated in Figure 2. The combinators used to compose 
the behaviour of the individual circuit components also compose the layout of 
the circuit. An example layout of the Lava generated KCM is shown in Figure 3. 
This specific KCM has been used in several real digital signal processing and 
image processing applications. 

Conclusion 

In conclusion, we observe that despite the emergence of new hardware descrip- 
tion languages like SystemC there is still a role for declarative hardware de- 
scription languages that provide multi-level descriptions within one framework. 
The ability to write arbitrary functions in a programming language and then 
pass these functions as arguments to circuit builders is a particularly powerful 
technique. This has been demonstrated successfully in the design and imple- 
mentation of a constant coefficient multiplier core, and is typical of the way in 
which Lava is used in practice. We feel that we have only just begun to exploit 
the fact that we have a multi-level language. There are exciting possibilities 
for doing formal verification during circuit generation, instead of afterwards, for 
instance. In similar style, one can imagine analysing circuits for non-functional 
properties like timing, wire length or power consumption during the process 
of generating the final implementation. Having a multi-level language gives an 
extra phase on the way to a final circuit implementation, and so opens the way 
to performing various analyses, including formal verification, in new ways. 
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Generic Operators for Circuit 

Syntliesis and Optimisation. 

Jean Vuillemin' 

We highlight a technique for describing circuits within languages which support objects and 
generic operators - such as PAM-DC, Jazz or Lava. The source code is written in terms of 
generic operators applicable to all types of inputs. In the examples DCT and FHT chosen for 
illustration, they are simply the arithmetic operators: +, -, * and integer constants. 

If we apply our source code to inputs of type int - the built-in integer type in the language - 
we obtain a software simulator for our target circuit. This simulator is efficient because it 
relies on efficient arbitrary precision arithmetic rather than bit level operations as normal 
circuit simulators would do. Having such an efficient software specification at our disposal is 
handy for: (a) verifying - in an exhaustive manner - if a particular choice of representation 
for the DCT coefficients meets or not the JPEG standard; (b) providing the physicists - who 
are the end-users of the detector in which FHT takes place - with an accurate and efficient 
software model, and let them adjust the critical parameters in the final algorithm. 

If we apply the very same source code to inputs of type net - this type is built-in in Jazz - 
we obtain a bit-serial (base 2) circuit for implementing our algorithm: it has the same bit- 
wise behaviour as our previous simulator, modulo the I/O bit-order. Based on area and 
clock-speed, this would be the prime choice of representation for an ASIC implementation. 

If we now apply our source code to inputs of type serialk - each arithmetic operation has to 
be constructed for this type - we derive digit-serial (base 2"^) circuits for our application. 
Each value of the integer parameter k=l,2... corresponds to a different Area/Time trade-off 
This tool proves critical in finding the sweet spots for various implementations in various 
technology. Points in the curve are been found optimal for: k=2 with X3K, k=3 with X4K 
and k=4 with CHESS. Another input type is useful: the limiting case when k=* is equal to 
the maximal binary length among operands in the application, and from which we 
automatically derive the bit-parallel circuit implementation. So we can systematically 
explore points in the Area/Time domain, from the smallest circuit k=l to the largest k=*. 

To fiirther explore the hyper-serial part of this domain, we need two more technological 
ingredients: block-memories and dynamic-instructions. Both features are present in CHESS; 
with a regular FPGA, dynamic-instructions can be realized by devoting some inputs to 
coding the operation. They let us implement the type hypert fi"om which we derive hyper- 
serial (base 2'"^) circuits: each gate in the circuit for k=l/2 realizes two gates fi-om the bit- 
serial circuit k=l; each gets computed on alternate cycles, and one bit of memory is required 
per disappearing gate so as to store the intermediate value. This is done in a DCT connected 
to a single ported memory. Larger value of 1/k lead to smaller circuits performing more 
sequential processing through block-memories. The synthesized circuit in the limit k=l/* is 
completely sequential, just as a software bit-level simulator. 

^ Ecole Normale Superieure. 45 rue d'Ulm, 75230 Paris Cedex 5, France. 
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[ Today at AMD, page 1 J 

• Traditional simulation-based methods: 

— Block-level "whackers" 

— Full-chip directed tests written by hand 

— Full-chip test programs written by pseudo-random 
test generators 

— Various "checkers" monitoring simulation for poten- 
tial bugs 

• Boolean equivalence checking for comparing 
RTL (Register-Transfer Logic) models with cus- 
tom gate-level models 

— Synthesis alone does not meet all our needs 



[ Today at AMD, page 2 J 

• Formal verification using the ACL2 theorem- 
proving system 

— Proofs of correctness of RTL floating-point modules 

o SpecificaUy, proofs are done on the output from 
translation tools applied to the RTL. 

— Proofs of correctness of higher-level algorithms im- 
plemented in RTL 

— Ongoing improvement of ACL2 itself and libraries of 
lemmas used to "program" ACL2 

This talk focuses on theorem proving and the 
consideration of more automatic formal meth- 
ods. 



[ ACL2 J 

• ACL2 [1] is "A Computational Logic for Ap- 
plicative Common Lisp" 
(descendant of Boyer-Moore theorem prover) 

• Authors: Matt Kaufmann and J Moore 

• Interactive prover with induction, conditional 
rewriting, and decision procedures (arithmetic, 
equality. Boolean logic) 

— "Programmed" with theorems proved by the user, 
usually stored as rewrite rules. 

• Publicly available at: 
http://www.cs.utexas.edu/users/moore/acl2 

— Includes numerous papers and proof scripts, and 
links to ongoing work 

• [Plug] ACL2 Workshop immediately follows 
this DCC Workshop. 



[ Some AMD Formal Verification History J 

We have emphasized automated theorem prov- 
ing. 

• 1995-96: Division and square root algorithms 
for AMD-K5 microcode[3, 5] 

• 1997-present: Proofs of floating-point algo- 
rithms and actual RTL that use ACL2 on the 
AMD Athlon"^"^ processor and its derivatives [6, 
7,8] 

— We have a translator from our proprietary RTL to 
ACL2 [7] that enables RTL proofs. 

• 2001: Completed some protocol-level proofs 



[ Floating-point Verification, page 1 J 

A natural target for theorem provers [10, 4] 

• Concise formal specifications relating outputs 
to inputs 

• The RTL is relatively tractable. 

— While the size of an FPU may be substantial, the 
logic tends to decompose by operation. 

— The interfaces with other modules are smaller and 
simpler. 

• Complexity of floating-point designs causes 
problems for other verification approaches. 

— Testing alone may be inadequate. 

— Decision procedures used in formal verification tradi- 
tionally have capacity limitations, for example for mul- 
tiplication and shifting. 



[ Floating-point Verification, page 2 J 

We have addressed the verification of RTL mod- 
els with increasing levels of complexity. 

• Started with simple pipeline-based designs 

• Conditional pipelines [2] allowed more com- 
plicated signal dependencies and the sharing of 
hardware among operations of different laten- 
cies. 

• Current work involves RTL with feedback (es- 
pecially state machines, which are used in the 
implementation of iterative algorithms). 



[ Floating-point Verification, page 3 J 

Various tools besides ACL2 are involved in this 
verification effort. 

• "Translator" (written in flex/bison/C++ and 
ACL2) takes RTL as input and generates forms 
in a Lisp-like target language for specifying state 
machine transitions. 

— We have also written high-level specs directly in this 
target language. 

• "Compiler" (written in ACL2) analyzes signal 
dependencies and pipeline structures and pro- 
duces ACL2 definitions. 



[ Floating-point Verification, page 4 J 

• Tools (written in ACL2) automate repetitive 
tasks by generating lemmas automatically from 
the RTL: 

— Lemmas about bit-vector widths 

— Lemmas   used   in   reasoning   about   conditional 
pipelines [2] 

— Lemmas connecting different models (combinational 
and executable) 

• ACL2 library of general reusable lemmas [9] 
has been designed to simplify terms built from 
RTL operations, in many cases automatically. 

— Development continues on the RTL library, with 
users inside/outside of AMD [10]. 



[ Protocol-level Verification, page 1 J 

Formal verification of non-floating-point RTL 
can be considerably more difficult. 

• Unclear and incomplete (or nonexistent) specs 

• Decomposition of verification task is far more 
difficult. 

— Sufficient invariants often involve every state vari- 
able, and significant and complex environment assump- 
tions are required. 

• Experimental formal analysis of a bus inter- 
face unit (many thousands of lines of RTL) 

— instrumental in resolving a subtle liveness issue 

— limited practical value 

• Higher-level proof attempt on cache correct- 
ness 

— Partially completed, but appeared to have limited 
payoff relative to the efl["ort involved 

10 



[ Protocol-level Verification, page 2 J 

We completed proofs when the effort seemed 
justified. 

• Proof of a write-ordering property with re- 
spect to a fairly sophisticated mechanism 

— Proof performed at algorithm level. Abstracted nu- 
merous uninteresting details. Formal analysis more ef- 
fectively focused at subtle cases. 
— Informal statement: If processor PI performs write 
Wr(addrl) followed by write Wr(addr2), and processor 
P2 performs reads at address addr2 and then addrl, 
then if the read at addr2 gets the new value, so does 
the write at addrl. 

• Proof of progress for a routing module 

— The proof was performed on a model which general- 
ized the RTL (i.e., the RTL was functionally equivalent 
to an instance of the model). The model was defined 
with recursive functions and data structures, which pro- 
vided a much more expressive "language" for defining 
invariants, refinement maps, etc. 

11 



[ Attempts at Model Checking J 

We have begun looking at model checking and 
symbolic simulation, but initial results are lack- 
luster. 

• Our designs are in a proprietary language, 
which is not an input language for existing Mo- 
del Checkers. 

- Translator output is often difficult for a human to 
read. 

• Attempts at using symbolic simulation were 
ineffective due to incompleteness of search. 

- In order to expose bugs, we need to simulate for 
hundreds of cycles and simulation becomes inefficient 
much sooner than this. 

• Attempts at using Bounded Model Checking 
have been more effective, but the property def- 
inition complexity is considerably higher. 

— Must expUcitly define strengthened invariants. 

— Multiple modules expose expressiveness and capacity 
issues. 

12 



[ Problems J 

• Modules are large (many thousands of lines). 

• RTL is not written in a standard language. 

• It takes effort to develop meaningful specifica- 
tions, which are not always readily supplied by 
the RTL developers. 

Is formal verification cost-effective? 

— RTL writers have told us that any value added would 
appear to be in verification involving interfaces among 
multiple large modules. 

— Time to write specs is a real issue, but has some 
support among the RTL designers. 

— We developed a simple checker (written in ACL2) 
for some sorts of typos that have been seen during pre- 
silicon RTL. 

Capacity, Capacity, Capacity... 

13 
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Considerable progress has been made in the past few years in using formal methods to verify models of 
processors at the microarchitecture level. Successful verification of such models has been achieved using, for 
example, Burch-Dill style proofs based on efficient decision procedures or general purpose theorem provers, 
as well as proofs based on model checking and abstraction. However, these models, roughly at the level 
detail presented in computer architecture textbooks, are still far removed in complexity from the "RTL" 
level models used in the design of commercial microprocessors. 

The complexity of commercial RTL-level designs stems from a number of factors, including low-level opti- 
mizations introduced by designers, the somewhat baroque nature of the instruction sets of most commercial 
processors, and the requirements of logic synthesis and simulation tools. The task of specification is further 
hampered by the fact that processor designs generally do not implement their instruction set architectures 
faithfully in all cases. Thus, correctness must be specified relative to certain restrictions on the instruction 
stream, which may not be precisely documented, and must be inferred from the design itself. 

Using a commercial microprocessor design as an illustration, we will consider some approaches to spec- 
ification and verification that make it possible to verify RTL-level processor designs against instruction set 
architecture models. We will cover a number of issues that arise in RTL-level verification that may not be 
encountered in more abstract models, including: 

• Specification strategies that allow a greater degree of localization of the verification problem, to cope 
with the large size of the model. 

• Tradoffs between verification at the bit level and at the word level (i.e., using uninterpreted functions). 

• Tradeoffs between a direct refinement approach and the use of an intermediate model. 

• Strategies for dealing with low-level asymmetries, such as variable-length instruction encodings, variable 
granularity of data transfer (bytes, words, cache lines), bit level manipulation of addresses (in cache 
controllers, for example), and so on. 

• Specification approaches for dealing with incoherent caches and other implementation anomalies. 

Although theses issues will be addressed in the context of a proof of correctness by compositional model 
checking, we will also consider the implications for proofs using the Burch-Dill approach. 
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We will consider some of the problems involved in 
verifying the actual RTL code of a commercial processor 
design, as opposed to an architectural model. 

This is a work in progress... 

Outline 
Methodology 
The PicoJava design 
Verification Strategy 

Problems 

Proof Methodology 

property 

"circular" assume/guarantee proof 
•divide into "units of work" 

i i i i i u 
1^9 ■•■E''^P°''cl "case splitting 

•identify resources used 

abstract interpretation 
•reduce to finite state 

model checking 

"Circular" assume/guarantee 

Let p -** q stand for 
"if p up to time t-1, then q at t" 

Equivalent in LTL of 

-(P U -,q) 

Now we can reason as follows: 

q->*p 
p->*q 

Gp A Gq 

That is, if neither p nor q is the first to be 
false, then both are always true. 

Using a reference model 

 ^ A 

4  

     e.g., programmer's model 

'    refinement relations 
(temporal properties) 

"circular" proof:     q ->* p 

&p A Sq 

A and B each perform a "unit of work" 



Temporal case splitting 

Idea: 
parameterize on most 
recent writer ivat 
time t. 

Vi: 6((w=i) => (|)) 

Abstract interpretation 

Problem: variables range over unbounded set U 
Solution; reduce U to finite set 0 by a 
parameterized abstraction, e.g., 

0 = {{i}. U\i) 
where U\i represents all the values in U except i. 

Need a sound abstract interpretation, such 
that: 
if ((i is valid in the abstraction, then, for all parameter 

valuations, i} is valid in the original. 

Data type abstractions in SMV 

Examples: 
- Equality —X— 

(i) U\i 

w 1 0 

U\i 0 !*■ 

represents 
"no information" 

- Function symbol application 

i'"x ■■■''■ m \)\\ 
ww m ,SL'- 

Unbounded array reduced to one fixed element! 

Note: truth value under abstraction may be X... 

Applying abstraction 

Must verify by model checking: 

({) -»+ ((w=i) => <|)) 

i.e, if Pi is the most recent to modify Vj, then v, 
is correct. 

Review 

By a sequence of three steps: 
- "circular" assume/guarantee reasoning 

(restricts to one "unit of wopl<'') 

- case splitting (adding parameters) 
(identifies resources used in tliot unit of work) 

- abstraction interpretation 
(obstpocts owoy everything else) 

..we reduce the verification of an unbounded 
system of processes to a finite state problem. 

PicoJava 

stack machine architecture 
Implements Java bytecode interpreter in 
hardware 



Instruction path 

We will concentrate on 1$ and Fold units. 

Queue 

Specification strategy 

Since Implementation is very large and 
complex, we need a specification strategy that 
allows a fine-grain decomposition of the proof. 

Topics: 
- Reference Model 
- Histories 
- Togs and Refinement Relations 
- Dealing with Exceptions 

Reference Model 

Programmer's view of Java machine (ISA) 
- contains only programmer visible state 

Relating ImpI to Ref Model 

Specify ImpI w.r.t. reference model history 

Ref Model Complete state 

History / 

Refinement relation 

h Implementation .-M 

Correctness criterion 

Correctness is defined as follows: 
- There exists some interleaving of ImpI and Ref, 

such that the given relation holds between ImpI and 
history. 

Must choose a witness interleaving 
- Any interleaving that ensures reference model 

"stays ahead of" the implementation. 

We use this approach because one step of implementation 
may correspond to many steps of reference model. 

Multiple histories 

Instructions are a variable number of bytes 
Some parts of ImpI deal with bytes, some with 
instructions. 
Keep two histories: 
- Byte level history (stream of instruction bytes) 
- Inst level history (stream of instructions) 

We could also record history at coarser granularity if 
needed... 



Tags and refinement relations 

Tags are auxiliary state information 
Tags are pointers into a history (byte or inst) 

Tags flow with data 
Refinement relations 
- Arc temporal specifications of data correctness 
- Use tags to locate correct value of data In history 

Note, we sometimes have to prove equality of tags to 
show correct data flow 

Tags for instruction path 
byte history tog 

inst history tag 

equality proof 
derived tag 
incremented tag 

Queue 

Alignment between histories 

• Comparing tags into byte and inst histories 
- record byte history position of each inst 

Inst history     ^ 

• 

Byte history              \ 

• 

Dealing with Exceptions 

Exceptions (e.g., branch mispredictions) 
- pipeline may be executing incorrect instructions 
- Incorrect instructions must be flushed 

Specification strategy 

- Define tog "max" 
•   latest instruction correctly fetched 

- Data with tag after "max" is unspecified 

History 

data correct 
t 

max data unspecified 

Summary of approach 

strategy 
- Reference model/ Histories/ Tags 

Localization of verification 
- Model checking can be localized to very small scale. 
- State explosion is not a problem. 

Problems 



Accidents happen to words 

Verification depends strongly on abstraction 
of data types. 
- Use unlntcrprcted types and functions. 

- 32-bit word might be abstracted to: 
{o,b,~} 

where a and b are parameters of a property. 

Problem: 
- In RTL descriptions, words are often arbitrarily 

broken into bits and reassembled. 

Exan^ple accident 

8-bit register implemented in cells: 
module reg8(clk,inp,out); 

input elk, inp[7.0]; 
output out[7:0]; 
regl cell0(clk,inp[0],out[0]); 

regl cell7(clk,inp[7].out[7]); 

endmodule 

The state is actual held in bits. 
How do we abstract the state? 

Example Accident 

• Veriiog can't make 2-C 
module f oo(bits,...); 

input bits[63:0]; 
byteO = bits[7:0]; 

arrays! 

byte? : bits[63:56]; 

Instead of an array of bytes, we get 64 bits! 

A pragmatic approach 

If possible, verify property at bit level 
- Words must not index large arrays 
- Can use "bit slicing" 

Else, use two-level approach 
- Make intermediate model at word level 
- Verify properties using abstractions 
- Verify intermediate model at bit level 

This avoids re-modeling the entire design using 
uninterpreted types and functions. 

Bit-field abstractions 

Words are often divided into fields 

Typical abstraction 
- property has parameters t ($ Tag) and a ($ Addr) 

31 14 4 0 

But accidents happen... 

• Adresses of many different bit lengths occur 

^- 
Cache line 

Half cache line 

Word 

Byte 

Cache location 

OTfla.-. IF«ii.u J^ 
14 4 

Since types are not structured, how does a tool know how 
to divide and abstract these bit vectors? 



Manual approach 

Re-model using structured types 
- i.e., instead of a bit vector, use: 

Struct { 
tag ■• $TAS; 
addr : $ADDR; 
offset: array 3..0 of boolean; 

} 
Prove model correct at bit level 
Prove property using type-based abstractions 
- examples: cache contents correctness, aligner 

output, etc... 

Mapping between representations 

• Sometimes need to translate between 
representations with uninterpreted functions 
- example: 

31 

(Must manually instantiate injectiveness axiom) 

What's needed? 

Ability to abstract any bit-field of a word 
- conceptually straightforward 

Some heuristic method of grouping bits 
together and assigning them types? 
- less obvious 

Essentially, we need to be able to reverse-engineer 
a bit-level design into a structured design. 

Incoherence 

Few processors implement ISA precisely 
- makes writing a specification difficult 

Example: three incoherent caches in PicoJava 

- Instruction (I) 
- Data (D) 
- Stacl< (S) 

How to handle mismatch between ISA and 

ImpI? 

Solution (?) 

Mark every address as valid/invalid for I,D,S 

Mem 
Example: 
- I becomes valid when 1$ line explicitly flushed 
- I becomes invalid when location written as data 

Assume program never reads invalid addresses 
Problem: Pipe delay means address is readable unknown 
number of clock cycles after flush instruction (???) 

Accidental correctness 

Queue 
Decode must be 
one-hot here Example: 

- decode not one-hot until 
first queue load (I) 

- but, in PSR, Fold unit not 
enabled at reset 

- one instruction required to 
enable Fold unit 

- hence one-hot when Fold 
unit enabled! 

Note, local property (one-hotness) depends on far away logic 
(PSR, integer unit, etc.). This is not written anywhere 
because no one actually knows why circuit works! 



Conclusions (?) 

Compositional verification of real processors 
at RTL level /impossible. 
- Reference model/ Histories/ Tags 

Several aspects of typical RTL descriptions 
make it much more difficult: 
- Bit-level representation of words 
- Lack of structured data types 
- Accidental correctness 

Design for formal verification could largely correct 
these problems. 



An Introduction to Abstract Interpretation 

Nicolas Halbwachs 
Verimag/CNRS, Grenoble 

Abstract 

Abstract interpretation has been under development for more that twenty years 
[CC77]. It can be viewed both as a unified theory of approximation in dynamic 
systems, and as a generic technique for analysing these systems. It has mainly been 
applied to program analysis (e.g., [CC92a, NNH99]). 

In this short tutorial, we present the principles of abstract interpretation from 
the point of view of its application to verification. In this context, abstract inter- 
pretation has mainly been used [CGL94, GL93] to reduce infinite state systems to 
finite ones: the state space in quotiented into a finite number of classes, and the 
considered system is interpreted over these classes. Applying standard techniques 
to this abstract system allows one to compute, for instance, over-approximations of 
the reachable states of the system. 

This finite quotienting of infinite state spaces uses only a part of the abstract 
interpretation technology. The general approximation technique can be applied to 
infinite state systems, and combines abstraction with extrapolation, which is a way 
of "guessing" the limit of a computation. [CC92b] shows that this general technique 
can be strictly more powerful, but its applications to verification (e.g., [HPR97]) are 
not widespread. 
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Abstract 

We design a static analysis that extracts the "shapes" of a circuit 
described in structural VHDL. It automatically computes a superset 
of all the possible connections between wires of the circuit. 

This analysis is able to infer and describe connections between 
arrays of wires of arbitrary size in a precise way. Although precise, it 
is still efficient. First, we use a compact representation to summarize 
the possible connections of a design. Second, the analysis is modular: 
it can be run on any component, the result can then later be reused 
for analyzing a code that instantiates that particular component. 

The result of our analysis helps programmers getting better in- 
sights about their code. It allows a quick understanding of the depen- 
dences inside a module and provides a way to estimate the impact of 
a piece of code. 

1    Introduction 

Today, circuits are specified using Hardware Description Languages. Mod- 
ern HDL, such as VHDL or Verilog, allow different levels of description to 
coexist.   The classical development scheme in VHDL is to first sketch the 



A <= B or C; 

Figure 1: Wire connection 

entity example is 
generic(n  :  integer); 
port(A : bit.vectord to n), B : bit_vector(l to 2*n)); 

end; 

architecture rtl of example is 

for I in 1 to n 

B(I) <= not A(2*I); 

end; 

end; 

Figure 2: Component 

functionality of a system at a very high level of abstraction and then to re- 
fine this description until it can be automatically synthesized. A structural 
VHDL description specifies how basic gates and components (circuits) are 
to be connected in order to produce the final circuit. For instance the very 
simple program in figure 1 gives rise to a circuit where the wire A is connected 
to both wires B and C through a or-gate. Prom a structural VHDL descrip- 
tion, our goal is to automatically infer the structure of the interconnections 
between wires. That is, in the case of code 1, we want to report that A is 
connected to B and C and that no other connection exists. We forget the fact 
that this connection occurs through a or-gate. Thus we extract the "shapes" 
of circuits described in structural VHDL. 

This task seems very easy in the case of such a simple example. One 
could use a graph whose nodes are variables names and edges represent the 
possible connections. But, now consider the module described in program 2. 
The module takes an integer n and two arrays, A and B, of wires . It connects 
element i of B to element 2*z of A. Thanks to parameter n, an infinite family of 
circuits is here described. And, there is no a priori bound on the sizes of both 
A and B. It is thus more difficult to represent the possible connections induced 
by program 2. One possible solution is to restrict ourselves to programs 
without any free variables. Then we can expand the body of each component 
as many times as it is instantiated and also unroll loops.   Every array of 



the resulting program is now of finite length. Distinguishing between every 
elements of the arrays, we can apply the same technique as before. This 
method leads to very precise results. However it has many drawbacks: we 
can not analyze pieces of code outside their instantiation context; we must 
handle very expensive data-structure; the size of the code has blown up. 
Maybe more importantly, the program transformation makes the analysis 
results difficult to report to the programmer. As an alternative, we can 
decide to represent a whole array by only one node in the shape graph. 
Unfortunately, this leads to very imprecise results. For instance, the shapes 
computed for example 2, would contain an edge from node A to node B that 
expresses the fact that any element of A may depend on any element of B. 

These two solutions are clearly both unsatisfactory. In order to come 
up with an efficient but still precise analysis, we conceived a compact data- 
structure that accurately summarizes the possible connections of any part of 
a circuit. As before, it consists in a graph whose nodes are variable names 
and edges stand for connections. This graph is enriched with numerical 
constraints that further refine the set of circuits it represents. We label an 
edge between two arrays by the numerical relation that holds between the 
indexes of the elements that are connected. In case of code 2, the analysis 
leads to a graph with an edge from B to A that is labeled by the constraint 
2 * / = r. This means that the l^'^ element of B may be connected to the r*'* 
element of A, as long as the relation 2*1 = r holds. This happens to be a 
very accurate description of the shapes of the connections. Our abstract data- 
structure is parameterized by the underlying numerical constraint domain. 
Different domains may be plugged in to tune the precision/efficiency ratio. 

The results of our analysis help programmers understand code they have 
not written. It allows them to quickly grasp the dependences between the 
variables of a piece of code. This may be particularly helpful when re- 
engineering or reusing code written by others. In the case of critical hardware 
system, one wants to estimate the impact of a failure of a particular com- 
ponent in the whole design. This can also be done with the help of our 
analysis. 

VHDL program slicing techniques as in [CFR+99] and [INIY96] provide 
the same kind of facility. However they make the very crude approximations 
we pointed out before. That is, individual elements in arrays are not distin- 
guished. Slicing is applied to whole VHDL whereas we restrict ourselves to 
the small RTL subset of the language. We made this on purpose so as to 
simplify the presentation and be able to put more emphasis on the novelties 



program 

module 

deal 

type 

statement 

assignment 

block 

for loop 

instanciation 

expr 

:= module* 

:= entity ident generic decl* port ded* 

architecture statement* 

:= ident : type 

:= integer | bit | bit.vector 

:= assignment \ block \ for loop \ instanciation 

:= expr <= expr 

:= block decl* statement* 

:= for ident in expr to expr statement* 

:= ident generic map ident* port map ident* 

:= 1 I TRUE I ident \ ident{expr) 

I expr + expr \ expr and expr \ expr = expr 

Figure 3: Abstract syntax of RTL VHDL 

of our approach. We nevertheless believe our shape analysis can be extended 
to handle all the constructs of VHDL. 

2    Syntax 

Figure 3 presents the abstract syntax of the VHDL subset we deal with. 
For concision reasons, this syntax is a lightened version of the heavily dec- 
orated official syntax of the IEEE standard [ANS88]. A program is a set of 
modules. Each module has an interface visible from the outside, the entity, 
and an internal definition, the architecture. The interface specifies the argu- 
ments passed during a component instantiation. The arguments of a module 
are of two kinds: ports connect a component to the rest of the circuit, and 
generics allow parameterization of the module. The architecture explicits 
the structure of the component by a set of statements. Statements are as- 
signment, block, for loop and module instantiation. An assignment connects 
wires through gates. A block allows the introduction of local variables. Note 
that the for loop also automatically introduces a local variable: the index 
ident of the loop. Module instantiation is a way to reuse previously defined 



instruction   ::= command \ call ident [ident/ident)* 

command   ::= createJnt ident expr \ delJnt ident 

I assert expr \ assign ident expr 

I create_sig ident \ del_sig ident 

I connect expr expr 

I command; command 

Figure 4: Control flow graph's instructions 

createJnt I 1 

as^^'fc-''      assert I<=n' ^K% 

i v/ 
0-f^-  ® © 

connect B(I) not(A(2*I)) 

Figure 5: Control flow graph 

components. 
Without any loss of generality, we suppose that all variables have distinct 

names, so that it becomes unnecessary to rely on the lexical scope to dif- 
ferentiate them. Variables are typed: a variable is either an integer (mi), a 
wire (bit) or an uni-dimensional array of wires (bit-vector). We call signals 
variables of type bit or bit.vector. 



3    Operational semantics 

We give the semantics of programs in two steps. First, we translate each mod- 
ule from the source code into a control flow graph. An edge in the control 
flow graph links two program points and is labeled by a simple instruction. 
The set of instructions stems from the syntax of flgure 4. For example, the 
program of figure 2 is translated into the control flow graph of figure 5. Note 
that the language of instructions includes the composition of two commands. 
This means that one complex construction of our original language may be 
translated into the composition of simpler instructions. Expressing the con- 
structions of the language as a composition of simple operators reduces the 
cost of designing a static analysis. The soundness proof is smaller, the many 
but often somewhat redundant constructions of the source language may be 
handled quickly. Also, the analysis can be applied to any other language 
(like RTL Verilog) whose semantics can be expressed by composing the basic 
operators. The trick, however, is to keep the set of nuclear instructions both 

concise and expressive enough. We denote by / —+ /' the fact that there is an 
edge from / to /' which is labeled by the instruction i. Also, for every module 
g, entry{g) and exit{g) respectively denote the entry and exit program points 
in the graph of g. 

Second, we define the semantics of programs in an operational fashion 
[Plo81]. Programs are run on an abstract machine whose possible execution 
steps are described by a transition relation. The states of the machine are 
tuples of the form (/, p, C,S). A label / indicates the current point of execu- 
tion in the program. An environment p maps variables to values. A value 
may either be an integer, a wire or an uni-dimensional array of wires. The 
execution of a RTL VHDL program leads to the construction of a circuit. 
The circuit C is a collection of tuples (iw, T), where ro is a wire and T is some 
term built up from logical gates and wires. Lastly the stack S is needed to 
mimic the calling mechanism of modules. 

The non-inductive rules in figure 6 explains the possible steps for the 
abstract machine. When a module is called, a new environment, which maps 
the formals to the values of the actuals, is created. The previous environment 
is pushed onto the stack. Returning from a module amounts to restoring the 
previous environment by popping the stack. For all other instructions the 
environment and the circuit are modified according to the semantics of the 
commands. 



/ —> k Ac = call g fi/ai A /' = entry{g) 
p' = create_env/./Q.(p) A S" = S.{1, p) 

{l,p,C,S)-^{l',p',C,S') 
call 

S'.{k,p') = SAk'-U-l' 

{l,p,C,S)-^{l',p',C,S') 

I —»• r A c G command 
{p',C')elcj{p,C) 

{l,p,C,S)-^il',p',C',S) 

Figure 6: Operational semantics 

return 

execute 

The semantics of commands is specified by rules like: 

(,',C')€ [assert 6exH(p,C)   ^   iM = true 
\ p  — p /\ L/   — U 

{p',C') e [connect lexpr rexprl{p,C)   ^=^   p' = p AC' = C U {{w,T)} 

I w = Uexprlp 
where s !        , 

I T = {rexprlp 

This means that assert bexpr allows execution to continue if the current 
state makes the boolean expression bexpr evaluate to true. Furthermore, 
connect target expr creates a new connection in the circuit between the wire 
denoted by target and the term denoted by expr. For the other commands 
let us just state informally that commands createJnt, delJnt and assign ma- 
nipulate integer variables: they respectively create a new integer variable, 
destroy it and assign to it a new value. Commands create_sig and deLsig 
deal with signals. create_sig creates a new wire or an array of wires distinct 
from all previously existing wires. del_sig eliminates a signal variable from 
the environment. 

We denote by XQ the set of initial states of the program. It contains all 
the states (Z, p, C, S), where I is the entry point of the main module, p maps 
free variables of the module to any possible value of their type, the circuit C 
and the stack S are both empty. 



An execution trace of a program is a sequence of states SQ ... Sn such 
that So is an initial state and such that any two consecutive states SjSi+i in 
the trace are linked by the transition relation. Trace semantics groups all 
possible (partial and complete) execution traces of a program, and it can be 
expressed as the least fixpoint of the following continuous function: 

T{X) = Xo U {So • • • SnSn+l | SQ . . . S„ € X, S„ -^ S„+i} 

Trace semantics is our concrete model of program execution. To design 
our shape analysis algorithm, we follow the methodology of abstract interpre- 
tation. We come up with an abstract domain that allows us to compute the 
property of interest (namely the shapes of the circuit built by a RTL VHDL 
program). Abstract and concrete semantics are related through a Galois 
connection. The fact that Galois connections may be composed allows us to 
reduce the complexity of the approach: we do this in several successive steps. 
The first step being a modular semantics. 

4    Modular semantics 

It is an awkward task to design a static analysis that is precise and at the 
same time scales up. Algorithms that scale up usually give rough information 
whereas precise algorithms tend to be very costly. One way to avoid this 
dilemma is to design modular analyses. Such analyses compute results, one 
module at a time, from the source of the module and from previous results 
only. 

The cornerstone of such an approach is a semantics which collects the 
segments of execution that occur inside each module separately. Segmented 
semantics can be given as the least fixpoint of the following continuous op- 
erator: 

S{X){g)   =   {so I lo = entry{g) A so G Xo} (1) 

U     {so\to...tmeX{f)A Im "-^ kAtm-^ SQ} (2) 

U     {SQ... SnSn+1  \ SQ . . . Sn € X (g) A In   —*   Wl A Sn -^ U A 

to...tmeX(h)Atm-^Sn+l} (3) 

U     {So...SnSn+l\so...SneX{g)ASn^Sn+l} (4) 

where every /j denote the label of the state with same index i 

The traces corresponding to a given module g are built in the following way: 
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• if ^ is the main module, then the initial states are added (1) 

• if the traces of a module / leads to a call to module g, then the first 
state after this call is added (2) 

• if one of the execution traces ends onto a module call to h, that the 
execution within h can reach the end of the module and return, then 
we extend the trace by the state after returning from the call (3) 

• as long as the execution remains within the same module g, then the 
trace is simply extended (4) 

We show the connection between trace and segmented semantics. In fact, 
we have defined a complete join morphism^ achop and we have shown that seg- 
mented semantics is a sound and complete approximation of trace semantics 
through the abstraction (Xchop- In other words we have the soundness: 

a,hop{lil> T) C Ifp S 

and the completeness: 
Ifp S C aehop(lfp T) 

Unfortunately, because of equation (2), the semantics of a module g can 
not yet be computed only from its source code and the results for all the 
modules it calls. To remedy this, we make a crude approximation and do 
not restrict the contexts in which g can be called. We can thus replace (2) 
by the simpler: 

{so I ^0 = entry{g)} 

For the purpose of shape analysis, we wish to collect in each program 
point the parts of the circuit that have been created since the beginning of 
the execution of the module. Hence we further abstract our semantics thanks 
to the following complete join morphism: 

a{X){g){k) = {{pn,Cn\Co)\{lo,Po,Co,So)...{ln,Pn,Cn,Sn)eX{g)} 

The resulting semantics is obtained as the least fixpoint of the continuous 
operator M of figure 7. This operator is the basis on which we develop the 
shape analysis algorithm. 

^A complete join morphism uniquely determines a Galois connection, see [CC92] 



entry (g)   =   {{p,C)\l = entry (g)} 
plug;^/„,(X)(F)   =   {{p,CuC')\{p,C)eXA{creBte.envf,faAp),C')eY} 

MihiM)   =   entry (^) 

U   [jm{X{g){l'))\l'--^l} 
A   =   IfpM 

Figure 7: Operator M 

5    Shape analysis 
The operator M manipulates infinite sets of pairs environment/circuit. Ob- 
viously, this makes the least fixpoint of M not computable. We design an 
abstract domain that represents possible connections in the circuit, i.e. its 
shapes. We then derive the abstract counterpart init", plug" and Ic]" for each 
of the operations that appear in the definition of M. An abstract operator M" 
is defined by simply replacing init, plug and |c] by their abstract correspon- 
dent in the equation of M. The local soundness of the abstract operations in- 
duces the soundness of Ifp M" with respect to Ifp M. Our algorithm then con- 
sists in computing the least fixpoint of MK Thanks to Tarski's fixpoint the- 
orem, this can be done by computing M«(±), M^{M^{±)), M«(M«(M»(-L))), 
... until stabilization. Lastly, the fact that our abstract domain checks the as- 
cending chain condition^ insures the termination of our analysis. Practically, 
more efficient fixpoint algorithms can be used, see [HDT87, Bou93]. 

As mentioned in the introduction, a dependence graph D is our abstract 
representation for shapes of circuit. The nodes of D are signal variables^ An 
edge between two nodes A and B indicates that there may be a connection 
from A to B. In the case where either A or B is an array, then the edge is labeled 
by a symbolic representation of the relationship that holds between the in- 
dexes of the elements that are connected. Many symbolic representation for 
constraints between integer variables have been proposed within the frame- 
work of abstract interpretation. Some are [Kar76, MinOl, CH78, Gra97]. 

^We can also use widening operators 
^Recall that a signal is either a wire or an array of wires 
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\ a 1 = J 

lefti 
lefti = 2 * righti + 1 

Figure 8: Pivot role of the environment 

In order to be able to infer a dependence graph without too much loss of 
information, we also need to keep track of the possible values of the integer 
variables in the program. Consider the following assignment statement: 

A(2*i+1)  <= B(j); 

Without knowing anything about the possible values of i and j, we can not 
do better but infer that some element of A is connected to some element of 
B. This is different in the case where we know that i = j. 

So, every abstract operation transforms pairs {E, V) of a numerical do- 
main and a dependence graph. We refer the reader to [HymOl] for their 
complete definitions. Now, suppose we use the numerical domain of linear 
equality [Kar76]. Let us sketch the action of [connect A(2*i+1) B(j)]l' on 
an environment where i = j and an empty dependence graph. This will 
keep the environment unchanged and add an edge from A to B in the graph. 
What constraint labels this edge ? Let the variables lefti and righti denote 
the index of A and B. From the expressions, we infer that lefti = 2 * i + 1 
and righti = j. The environment tells us that i = j. We put all these 
constraint together, project onto lefti and righti. This results into the 
constraint lefti = 2 * righti + 1- Figure 8 pictures the pivot role that the 
environment has played in this process. 

6    Implementation 

We implemented the analysis in ML. It is long of approximately 3000 lines 
of code.   The VHDL code is parsed.   From the syntax tree, we build the 
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entity example is 
generic (n : integer); 
port(A : bit_vector(0 to n); B : bit vector(0 

end; 
architecture rtl of example isg 
beging 

for I in@ 0 to n generate 
beginG 

B(I) <= not A (2*1) ;e 
enci;e 

end;@_ 

Circuit : B(ti) —> A(2*ti) 

Figure 9: Snapshot 

abstract domain and the abstract equations. Once this is done, a fixpoint 
computation algorithm is run. It traverses the control flow graph of the 
program in reverse post order and fires the abstract operations in turn. In 
the end, the result is output as html files. A snapshot from the analyzer is 
presented in figure 9. 

We were disappointed to find out that the analysis does not radically 
improve results of simpler technique like in [CFR+99]. The reason for this, is 
that most of the time, in realistic RTL VHDL programs, arrays are connected 
in very simple ways: so that the only extra information we are able to gather 
is the fact that the indexes of two connected arrays coincide. 

7    Conclusion 

We presented the design of an analysis that extracts the possible connections 
of a circuit described by a RTL VHDL code. We expressed the semantics of 
the constructions of the language thanks to the composition of a small num- 
ber of operators. This makes our analysis applicable to any language whose 
semantics can also be expressed with these operators (e.g RTL Verilog). The 
analysis may be computed one module at a time. We believe this modular- 
ity allows it to scale up.   Unfortunately, the practical result turned out to 
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be somewhat disappointing: considering realistic RTL VHDL programs we 
think our technique may be an overshot. However, our theoretical results, 
in particular the modular semantics and the domain of dependence graphs 
enriched with numerical constraints, are general and we hope they may be 
reused in other works. 

We believe that, as future work, it would be interesting to incorporate 
informations about the time dependences: i.e to collect properties of the form 
such output depends on such input with a delay of 3 cycles (or 10 ns). 
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Abstract. Various languages have been proposed to describe synchronous 
hardware at an abstract, yet syntesisable level. We propose a uniform 
framework within which such languages can be developed, and combined 
together for simulation, synthesis, and verification. We do this by embed- 
ding the languages in Lava — a hardware description language (HDL), 
itself embedded in the functional programming language Haskell. The 
approach allows us to easily experiment with new formal languages and 
language features, and also provides easy access to formal verification 
tools aiding program verification. 

1    Introduction 

There are two essentially different ways of describing hardware. One way is struc- 
tural description, where the designer indicates what components should be used 
and how they should be connected. Designing hardware at the structural level 
can be rather tedious and time consuming. Sometimes, one affords to exchange 
speed or size of a circuit for the ability to design a circuit by describing its be- 
haviour at a higher level of abstraction which can then be automatically compiled 
down to structural hardware. This way of describing circuit is usually called a 
synthesisable behavioural description^. Behavioural descriptions are also often 
used to describe the specification of a circuit. 

There exist a number of languages that one can use to structurally describe 
hardware. An example is the synchronous language Lustre [8,9], which can be 
compiled into hardware structurally [21]. Languages that can be used for synthe- 
sisable behavioural description are for example Esterel [2] and Occam [17]. The 
popular industrial description languages VHDL and Verilog allow both kinds of 
descriptions. 

In this paper, we will only deal with synchronous hardware, that is, all latches in 
a circuit listen to one omnipresent global clock. Moreover, at every clock cycle, 
if each input to a circuit is defined, each point in the circuit stabilises to exactly 

•* These are to be distinguished from behavioural descriptions (as used in industrial 
HDLs such as Verilog and VHDL) which are used to describe the functionality of a 
circuit, but are do not necessarily have a hardware counterpart. 



one voltage, low or high. However, we do not require that every feedback loop 
in the circuit contains a latch. 

There are two main classes of synthesisable languages: ones where the descrip- 
tion determines the timing behaviour (cycle by cycle) of the resultant circuit, 
and ones with no explicit timing control, and where the compilation only guar- 
antees that the output at the end of the algorithm (or at designated points in the 
algorithm) matches that of the circuit. Languages with strict timing are neces- 
sary to describe circuits such as protocol implementations, and reactive systems, 
where the circuit continuously runs, sampling inputs, and behaving accordingly. 
In practice, some compilation schemata fall somewhere in between these two 
classes. In particular, commercial synthesis tools for Verilog and VHDL usually 
provide the user with the option of choosing how strictly the timing behaviour 
specified is adhered to. In the rest of the paper, we will be talking exclusively 
of strict timing compilation, but the approach is equally applicable to languages 
with loose timing. 

Embedded Description Languages 
Using a technique from the programming language community, called embedded 
languages [11], we present a framework to merge structural and behavioural 
hardware descriptions. An embedded description language is realised by means of 
a library in an already existing programming language, called the host language. 
This library provides the syntax and semantics of the embedded language by 
exporting function names and implementations. 

The basic embedded language we use is Lava [5]. Lava is a structural hardware 
description language embedded in the functional programming language Haskell 
[18]. From hardware descriptions in Lava, EDIF netlist descriptions can be au- 
tomatically generated, for example to implement the described circuit on a Field 
Programmable Gate Array (FPGA). This has previously led to highly efficient 
implementations of complicated circuits [6,25]. 

Embedding a language is a powerful concept because descriptions in the embed- 
ded language are first-class objects in the host language. In the case of Lava, this 
means that hardware descriptions can be generated, analysed and transformed 
using a full-blown programming language. 

The idea is now to build a layer on top of Lava, which embeds a synthesisable 
behavioural description language. In order to do this, we have to specify the 
syntax of the behavioural language, and the way it is compiled into a structural 
hardware description. It is possible to describe all this in the Lava framework: the 
syntax is described as a Haskell datatype, and the compilation process described 
as a Lava circuit description. 

But why stop there? It is possible to embed several different behavioural descrip- 
tion languages, each with their own features, advantages and disadvantages. In 
this way, we can describe a hardware system, using different languages for dif- 
ferent parts, all within a single framework. 



Examples of uses of embedding in this way are: behavioural in structural, where 
we use a behavioural language to describe some parts, and plug these parts to- 
gether using a structural language; multiple behavioural in structural, the same, 
but having several different behavioural languages; structural in behavioural, so 
that we can describe a sub-procedure of the behavioural algorithm structurally; 
and even behavioural in behavioural, where we can describe sub-procedures for 
one behavioural language by using another behavioural language. All these ex- 
amples are useful in describing circuits as well as their specifications. 

Some of these examples are non-trivial to achieve, and we do not claim to have 
a generic solution to them. Our contribution proposes a common framework, in 
which one can quickly experiment with different approaches and new behavioural 
languages. The framework we propose. Lava, is powerful enough to use for de- 
scribing new languages, giving semantics to them, implementing them, and com- 
bining them. In the context of developing behavioural description languages, it is 
very convenient to have circuit descriptions, analyses, transformations, and im- 
plementation and verification methods backed up by a full-blown programming 
language. 

In section 2 we briefly introduce Lava and show how a simple high level language, 
that of regular expressions, can be embedded in Lava and how instances of 
this language can then be manipulated syntactically and compiled into circuits. 
In section 3 we illustrate how the embedded language approach extends easily 
to more complex languages by presenting a small, imperative style language. 
Flash. Section 4 then discusses more advanced issues: various ways of combining 
different high level languages, verification of compiled programs and exploring 
potentially dangerous combinational loops. 

2    Embedding Hardware Description Languages 

Circuit Descriptions in Lava 
Circuit descriptions in Lava correspond to function definitions in Haskell. The 
Lava library provides primitive hardware components such as gates, multiplexers 
and delay components. We give a short introduction to Lava by example. 

Here is an example of a description of a register. It contains a multiplexer, mux, 
and a delay component, delay. The delay component holds the state of the 
register and is initialised to low. 

setRegister (set, new) = now 
where 

old = delay low now 
now = mux (set, (old, new)) 

Note that setRegister is declared as a circuit with two inputs and one output. 
Note also that definitions of outputs (now) and possible local wires (old) are 
given in the where-part of the declaration. 



After we have made a circuit description, we can simulate the circuit in Lava 
as a normal Haskell function. We can also generate VHDL or EDIF describing 
the circuit. It is possible to apply circuit transformations such as retiming, and 
to perform circuit analyses such as performance and timing analysis. Lava is 
connected to a number of formal verification tools, so we can also automatically 
prove properties about the circuits. 

Generic and Parametrized Circuit Definitions 
We can use the one bit register to create an n-bit register array, by putting n 
registers together. In Lava, inputs which can be arbitrarily wide are represented 
by means of lists. A generic circuit, working for any number of inputs, can then 
be defined by recursion over the structure of this list. 

setRegisterArray  (set,   []) =  D 
setRegisterArray  (set,  new mews)  = val:vals 

where 
val    = setRegister  (set, new) 
vals = setRegisterArray   (set,  news) 

Note how we use pattern matching to distinguish the cases when the list is empty 
([]) and non-empty (x:xs, where x is the first element in the hst, and xs the 
rest). 

Circuit descriptions can also be parametrized. For example, to create a circuit 
with n delay components in series, we introduce n as a parameter to the descrip- 
tion. 

delayN 0 inp = inp 
delayN n inp = out 

where 
inp' = delay low inp 
out = delayN (n-1) inp' 

Again, we use pattern matching and recursion to define the circuit. Note that 
the parameter n is static, meaning that it has to be known when we want to 
synthesise the circuit. 

A parameter to a circuit does not have to be a number. For example, we can 
express circuit descriptions which take other circuits as parameters. We call these 
parametrized circuits connection patterns. Other examples of parameters include 
truth tables, decision trees and state machine descriptions. In this paper, we will 
talk about circuit descriptions which take behavioural hardware descriptions, or 
programs, as parameters. 

Behavioural Descriptions as Objects 
In order to parametrize the circuit definitions with behavioural descriptions, 
we have to embed a behavioural description language in Lava. We do this by 
declaring a Haskell datatype representing the syntax of the behavioural language. 
To illustrate the concepts with a small language, we will use regular expressions. 
The syntax of regular expressions is expressed as a Haskell datatype: 



data RegExp = EmptyString 

I Input Sig 

I Star RegExp 
I RegExp :+: RegExp 

I RegExp :>: RegExp 

The data objects belonging to this type are interpreted as regular expressions 
with, for example, a{b + c)* being expressed as: 

Input a  :>:  Star  (Input a :+:   Input c) 

Note that the variables a, b and c are of type Sig — they are signals provided 
by the programmer of the regular expression. They can either be outputs from 
another existing circuit, or be taken as extra parameters to the definition of 
a particular regular expression. We interpret the signal a being high as the 
character 'a' being present in the input. 

Since regular expressions are now simply data objects, we can generate these 
expressions using Haskell programs. Thus, for example, we can define a power 
function for regular expressions: 

power 0 e = EmptyString 
power n e = e :>: power (n-1) e 

Similarly, regular expressions can be manipulated and modified. For example, a 
simple rewriting simplification can be defined as follows: 

simplify (EmptyString :>: e) = simplify e 

simplify (EmptyString : + : e) 
1 containsEmpty e = simplify e 

1 otherwise = EmptyString :+: simplify e 

simplify (Star (Star e )) = simplify (Star e) 

Another useful algorithm which can be expressed is the one presented in [20], 
which reduces (in linear time) a regular expression e to another one / such that 
the empty string does not occur in / and e* is the same language as /*. Thus, 
from now on, we assume that the body of a Star cannot produce the empty 
string. 

Compiling Regular Expressions into Circuits 
The circuits we generate for regular expressions have one input start and two 
outputs match, and prefix. When start is set to high, the circuit will start 
sampling the signals. The output match is then set to high when the resulting 
sequence of signals is included in the language represented by the expression. 
The output prefix corresponds to a wire which indicates whether the compiled 
circuit is still active, and the parsing of the regular expression has not yet failed 
with respect to the received inputs. Note that the circuit will get extra inputs, 
which correspond to the parsed symbols. They are part of the regular expression, 
by means of the Input construct. 



start 

prefix 

match 

The type of the resulting circuit is thus: 

type Circuit_RegExp = Sig ->  (Sig,  Sig) 

since the resulting circuit has one input and two outputs. 
We express the compilation process as a circuit definition 
parametrized by a regular expression: 

regexp   ::  RegExp ->  Circuit_RegExp 

start The Empty String 
The compilation of the empty string is straightforward, 

pref ijf given the usage of the prefix and match wires: 

regexp EmptyString start =  (prefix, match) 
where 

match prefix = low 
match    = start 

low 

start 

a 
match 

start 

' match 

Signal input 
The regular expression Input a is matched if, and only 

prefix    if the signal a is high when the circuit is started. 

regexp  (Input a)  start =  (prefix, match) 
where 

prefix = and2   (start,   a) 
match    = delay low prefix 

Sequential composition 
The regular expression e : >: f must start accepting ex- 
pression e, and upon matching it, start trying to match 
expression f. 

regexp   (rexpl   :>:   rexp2)   start =   (prefix,  match) 
where 

(prefixl, matchl)  = regexp rexpl start 
(prefix2,  match)     = regexp rexp2 matchl 
prefix = or2  (prefixl,  prefix2) 

prefix 

prefix 

match 

Loops 
The circuit accepting regular expression Star e is very 
similar to that accepting e, but it is restarted every time 
the inputs match e. 

regexp   (Star rexp)   start =  (prefix,  match) 
where 

(prefix,  match')   = regexp rexp match 
match = or2  (start, match') 



start I Non-deterministic choice 
The inputs match regular expression e  : + :  f exactly 
when they match expression e or f. 

regexp  (rexpl  :+:  rexp2)  start =  (prefix,  match) 
where 

(prefixl, matchl)  = regexp rexpl start 
(prefix2,  match2)   = regexp rexp2 start 
prefix = or2  (prefixl, prefix2) 

*'"^'^<=^ match    = or2  (matchl, match2) 

A circuit resulting from such a compilation scheme is not necessarily efficient 
enough. Often, there are optimisations we can make, such as constant folding 
(when the input to a gate is always low or always high), sharing introduction 
(when we have identical gates with identical inputs), tree introduction (changing 
a linear chain of associative gates into a balanced tree), and constant introduction 
(when a circuit point provably always has the same value). Sometimes, more 
rigorous optimisation methods are necessary; in this case we can use external 
circuit optimisation tools such as SIS [7]. 

3    Compiling Flash 

In this section, we will show a slightly bigger example of a language, we will 
call Flash. It is quite a basic language, but it illustrates many of the issues 
one encounters when dealing with hardware compilation. As it is meant just 
an example, we deal quite informally with the semantics of Flash. More formal 
treatment of the semantics of similar languages can be found in [1,17]. 

Flash Syntax 
As before, we first declare a Haskell datatype that embeds the syntax of Flash. 

data Flash = Skip 
I   Delay 
I   Shout 
I   IfThenElse  Sig  (Flash,   Flash) 
I  While  Sig Flash 
I   Flash   :» Flash 
I   Flash   :I 1   Flash 

Flash is a simple imperative programming language containing the usual state- 
ments like skip, sequential composition (:»), if-then-else, and while. For sim- 
plicity, the language has no expressions. Instead, we can use Lava gates directly 
to create a signal representing the condition in both the if-then-else and the 
while loop. 

To create some interesting output, we have added a Shout statement. This state- 
ment is in the spirit of the Esterel emit statement [2]. It makes a special output 
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start start! 

cond 

shout 

fihish finish 

Conditional Parallel composition While loops 

Fig. 1. Compiling Flash 

of the circuit, called shout, high whenever Shout is executed. Further, we also 
have parallel composition (: I I), which has a fork-join semantics. Lastly, the de- 
lay statement is the only statement that takes time. When executed, it blocks 
the process until the next clock cycle. Note that Shout takes no time to execute. 

For example, a Flash program to output a clock-Hke output alternating between 
high and low could be written as: 

alternate  = While   (high)   (Shout   :» Delay   :» Delay) 

Compiling Flash 
start 

shout 

finish 

The circuits that we compile Flash programs into have 
one input, start, which is set to high to start the pro- 
gram. They will have two outputs: shout, which be- 
comes high when the program shouts, and finish, which 
becomes high when the program is done. 

In figure 1, we see the compilation schemata for the various language constructs 
of Flash. We show the Lava code for some of the constructs. 

The case for the while loop looks as follows: 

flash  (While cond prog)   start =   (shout,   finish) 
where 

(shout,   finish')   = flash prog start' 



restart = or2 (start, finish') 
start' = and2 (restart, cond) 
finish = and2 (restart, inv cond) 

We might (re)start the body of the while loop, if the whole loop is started or if 
the body has just finished. In that case, depending on the condition, we restart 
the body or we finish. Note that we have created a loop since finish' depends 
on start' depends on restart depends on finish'. In fact, this loop might be 
a combinational loop — we say more about this in section 4. 

Here is how we translate parallel composition: 

flash  (progl  :||  prog2)  start =  (shout,  finish) 
where 

(shoutl,  finishl)   = flash progl  start 
(shout2,  finish2)   = flash prog2  start 
shout    = or2  (shoutl,   shout2) 
finish = synchroniser   (finishl,   finish2) 

We start both processes as soon as the parallel composition is started. We shout 
when one of the processes shouts. But when do we finish? We use a little circuit, 
called synchroniser, which keeps track of both processes, and generates a high 
on the finish signal exactly when both processes have finished. 

synchroniser (finishl,   finish2)   = finish 
where 

both      = and2   (finishl,  finish2) 
one        = xor2   (finishl,  finish2) 
wait      = delay low  (xor2   (one,  wait)) 
finish = or2  (both,  emd2  (wait,  one)) 

The wire both is high when both processes are finishing at the same time. The 
wire one is high when exactly one process is finishing. The wire wait is high 
when one process has finished but not the other. 

4    Advantages of Embedding 

In this section, we discuss some of the advantages of embedding behavioral lan- 
guages in a general hardware description framework like Lava. 

Combining Languages 
The choice of the right language to solve a problem is crucial both to simplify the 
algorithm, and to generate more efficient circuits. For example, regular expres- 
sions can be very useful to generate circuits which validate their input, but, since 
they have no outputting mechanism, it becomes very difficult (or impossible) to 
perform calculations and output their results. 



Consider the problem of designing a circuit that accepts input sequences that 
behave Hke a clock with half-period n. This circuit might be useful for monitoring 
real input, or when expressing properties for later formal verification. It is easy 
to write a generic regular expression with the specified behaviour: 

acceptClock n c = Star  (    power a (Input c) 
:>:  power n  (Input   (inv c)) 

) 

Now consider using a regular expression to design a circuit that monitors two 
inputs, accepting them only if they behave like clocks with half-periods n and 
m. The size of the smallest regular expression capable of doing this has a size of 
the order of magnitude of the least common denominator of n and m, which is 
too big in practice. 

There are two solutions. One is to design a new language, in which it is easy 
to describe circuits as the one mentioned above. In fact, it would suffice to add 
conjunction as a regular expression operator, which would require some extra 
compile-time effort. The other is to combine the solutions to the two subproblems 
(recognising each clock) at the structural level using Lava: 

acceptXwoClocks n m (cl,c2)  = ok 
where 

(okl,_)   = regexp   (acceptClock n cl)   start 
(ok2,_)   = regexp  (acceptClock m c2)   start 
start      = delay high low 
ok = and2  (okl,  ok2) 

Obviously, the used subprograms need not be in the same language. For example, 
if we want to run a Flash program prg only to abort it as soon as the input does 
not match a regular expression rexp, we can use the following parameterised 
circuit: 

abort rexp prg start =  (shout',  finish) 
where 

(shout,   finish)   = flash    prg    start 
(prefix,   _) = regexp rexp start 
shout' = and2  (shout, prefix) 

Nesting Languages 
A problem with the approach mentioned above is that we deal with the input and 
output of the produced circuits at a rather low-level. This is quite error-prone, 
and it becomes difficult to change the shape of the produced circuits. 

A cleaner approach is not to express the combination of programs at the struc- 
tural level, but at the behavioural one. Thus, for example, one could allow adding 
Flash subprograms to regular expressions by augmenting the syntax of regular 
expressions by: 



data RegExp = ...      I   ImportFlash Flash 

Consider the problem of generating a circuit which recognises the input of a, b 
and c in any order. If this is required in a sub-expression of a regular expression, 
the result of expanding the expression can lead to a blow up in circuit size. 
However, a Flash program for this is rather simple to write: 

wait  s = While   (inv s)  Delay 
perm3   (a.b.c)   =  (wait a  :||   wait b   :||   wait  c)   :» Delay 

If this is required within a regular expression, one can easily use it as for example: 

Star   (ImportFlash   (perni3   (a,b,c))   : + :   ImportFlash   (perm3   (d.e.f))) 

Fiddling with the interfaces to make them match is thus done only once when 
the compilation of a regular expression of the form ImportFlash p is defined. 
However, this approach still has the undesirable effect that for every new lan- 
guage one uses, the compilers for all other languages need to be modified to be 
able to import programs from the new languages into the old ones. 

A more extendable approach would be to add one Import construct for each 
language: 

data RegExp = ...      1   ImportRegExp Circuit.RegExp 
data Flash    = ...      I   ImportFlash    Circuit.Flash 

Now, in order to import Flash programs in regular expressions, all we have 
to provide is a parameterised circuit f lash.regexp, which converts from one 
format to the other. 

flash_regexp flashc  start =   (prefix,  match) 
where 

(shout,  finish)  = flashc start 
prefix = shout 
match    = finish 

Needless to say, there are other ways in which a Flash circuit can be transformed 
into one which can be used by regular expressions. For example, one can gener- 
ate (or calculate) an active wire from Flash circuits which corresponds to the 
regular expression prefix wire. In defining these 'conversion' circuits, we have 
to be careful here not to invalidate the invariants that the languages involved 
assume and obey. The technique mentioned in the next section can be used to 
help with this. 'Calling' another language now simply becomes a matter of using 
the Import construct and the right conversion circuits. 

Error Wires 
Often, something can go wrong during the execution of a program. What exactly 
can go wrong depends on the semantics of the language. A standard example in 
a language with arithmetic expressions is division by zero. It is not clear what 



the corresponding compiled circuit would do in that case, since we do not want 
the circuit simply to 'abort'. 

In a language with parallel composition, things can go wrong due to parts of 
the circuit requiring single access: two processes trying to send a message on the 
same channel at the same time, two processes updating a shared variable at the 
same time, etc. If the semantics of the language disallows these situations, then 
we should make sure that the programs we compile to hardware are well-behaved. 

The solution we propose is to have an extra output to the circuit which goes high 
as soon as something goes wrong with the program execution — an error wire. 
This wire and the logic generating it will not appear in the final implementation 
of the circuit, but will be used to verify (by means of model checking methods) 
that the program in question is error-free. 

Consider a change to the semantics of Flash, requiring that only one process 
can shout at the same time. We would Uke to be warned at compile time if a 
program violates that property. Thus, we add an error wire to the output of Flash 
circuits, and adapt the compilation scheme accordingly. Here is the interesting 
case, parallel composition: 

flash  (progl  :ll  prog2)   start =  (shout,  error,  finish) 
where 

(shoutl,  errorl,  finishl)  = flash progl start 
(shout2,   error2,   finish2)   = flash prog2 start 
shout    = or2   (shoutl,   shout2) 
both      = and2   (shoutl,   shout2) 
error    = orl   [errorl,  both,  error2] 
finish = synchroniser   (finishl,   finish2) 

There is an error in parallel composition of two programs if there was an error 
in (at least) one of the processes, or if both processes shout at the same time. 
We can now declare a property, a circuit which outputs are always high if and 
only if a certain property holds. 

prop.FlashProgramDk prog start = inv error 
where 

(_,  error,  _)  = flash prog start 

The output ok is high if and only if there is no error in the program prog. We 
can check this property using the Lava command verify. 

Lava>  verify   (prop_FlashProgramOk   (alternate  :ll   (Delay  :» alternate)) 
Verify:   ...   Valid. 

Lava>  verify  (prop_FlashProgramOk   (Shout   :» Delay  :ll Shout)) 
Verify:   ...   Falsifiable. 
<high> 



The error wire technique can also be used to find bugs in the compilation scheme 
itself. Many languages have certain invariants that hold for every program. By 
raising the signal on the error wire when the invariant is violated, and verifying 
the absence of this error for random programs (by using a technique similar to 
the one developed in [4]), we can find bugs or increase our confidence in the 
compilation scheme. 

Combinational Loops 
Looking at the compilation scheme for the while construct, we can see that it is 
possible to introduce combinational loops: cycles in the circuit without a delay 
component. 

The usual solution in this case is to require that body of the while loop takes 
time — the execution path goes through at least one Delay statement. But 
even with this restriction, the resulting circuit might still contain combinational 
loops. However, these combinational loops are not bad, in the sense that the 
actual circuit never produces undefined outputs. In this case, the combinational 
loops are called constructive [24]. 

Even when all combinational loops in a given circuit are constructive, most of 
the external formal verification tools that Lava is connected to, are not able to 
deal with these loops. Fortunately, the method of temporal induction [23] can 
naturally verify properties of cyclic circuit definitions. However, the method is 
only sound if all loops in the circuit are constructive loops. 

Thus, before we implement or formally verify actual circuits containing possible 
bad loops, we have to prove that all loops all constructive. Lava provides a circuit 
analysis, called constructive, which does exactly that [3]. Here is how we can 
use it: 

Lava>  verify  (constructive   (flash  (While high Delay))) 
Verify:   ...  Valid. 

Lava>  verify  (constructive   (flash  (While high Skip))) 
Verify:   ...   Falsifiable. 
<high> 

What about parallel composition? When is it acceptable for a body of a while 
loop to contain a parallel composition? Take, for example, the following Flash 
program: 

possibleProblem inp = While high 
(  IfThenElse  inp  (Skip   ,  Delay) 

:1 I   Delay 
) 

In principle, we should be able to execute this, since for all programs p, the 
program p  : I I  Delay takes time to execute. Let us analyse the resulting circuit: 



possibleProblemCirc  inp = flash   (possibleProblem inp) 

Lava>    verify  (constructive possibleProblemCirc) 
Verify:   ...  Falsifiable. 
<low,  high> 
<high,  low> 

This shows that the simple compilation scheme we have used to illustrate our 
examples is not sufficiently robust to handle this example. Obviously, one can 
require that both sides of a parallel composition should take time (when appear- 
ing immediately inside the body of a while loop). However, this is a stringent 
and rather unsatisfactory restriction. A better solution would be to use a more 
complex compilation of loops, as used, for example, in [1]. 

5    Conclusions 

Related Work 
Hardware compilation of high-level languages has been around for quite a while. 
The approach has been considered potentially practical mainly since the intro- 
duction of programmable circuits. The compilation for various languages have 
since appeared in the literature, see e.g. [15,17,16,1]. An introductory overview 
of the methodology appears in [26]. 

It is widely recognised that different styles of synchronous languages lend them- 
selves more easily to difTerent applications. In [13,14], Maraninchi and Remond 
present Mode-Automata — a combination of state diagram based descriptions 
(based on Argos [12]) with the dataflow language Lustre [8]. The semantics of the 
resulting language are defined by a translation into plain Lustre. The approach 
is thus very similar to the one we use, except that they use external programs to 
read mode-automata and translate them into Lustre. The embedded language 
approach we use, allows us to translate and reason about the new language at the 
same level as our base HDL Lava. This allows a much more versatile approach 
to language combination. 

Poigne and Holenderski [19] present a theoretical framework for combining syn- 
chronous languages by using synchronous automata as the common semantic 
level. These ideas have been implemented in the SYNCHRONY WORKBENCH 

where programs written in one of a number of languages (Esterel, Lustre, Argos, 
and Synchronous Eifel) can be combined together. The main difference between 
their work and that presented in this paper, is that we embed the languages we 
use, and our intermediate language. Lava, is itself an embedded language. This 
gives us certain advantages: it is easier to add new languages to the framework, 
and language combination can be easily adapted depending on the requirements. 

Discussion 
We have presented a uniform framework in which it is easy to implement and 



hence experiment with synthesisable behavioural languages. By embedding these 
languages in Lava, we are able to define their compilation in a natural and easy 
way and, at the same time, benefit from the verification tools connected to Lava 
to improve compilation and verify programs. We also benefit from, the fact that 
we can directly generate EDIF netlists or VHDL from the circuits generated by 
our embedded compilers. 

Using this approach, we have shown that we can formally reason about programs 
at a number of levels. First, taking advantage of the fact that our programs 
are just data objects in Haskell, we can apply syntactic reasoning by defining 
functions which modify the program. Second, using the verification tools Hnked 
to Lava, we can define observers (in one of the languages) to verify properties of 
hardware described using either structural Lava, or some other language. Third, 
the compilation process itself can make use of the verification tools to check 
dynamic properties which may be needed to guarantee correct compilation. 

Within our framework, we have implemented various languages or subsets of 
them, such as Esterel, Handel and Occam, fragments of process calculi such as 
CSP and CBS, and some restricted temporal logics. We have also embedded 
state machine descriptions and specification languages in the same framework. 
This included different control and data features including updatable variables, 
buffered and unbuffered channels, exceptions and broadcast communication. De- 
scribing the compilation of a language is rather straightforward, and in fact, we 
have successfully used this framework in the teaching of a graduate course on 
hardware description languages. The definition of the compilation function for 
a language is usually not much different from a denotational semantics of the 
language in terms of a dataflow network. 

One of the important issues that we have not discussed in this paper is the 
question of the correctness of the compilation procedure. A number of approaches 
have been proposed [10,22,1] which are applicable to our compilation scheme. 
We are currently exploring how such proofs can also be presented uniformly 
within our framework. Preliminary work is encouraging and it is not difficult to 
prove that, for instance, the compilation of regular expressions presented in this 
paper satisfies regular expression equational axioms. 
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Reviewers' comments 

" / would like to see a retrospective on Daisy, summarizing the lessons learned 
in designing the language and especially interfacing to ordinary hardware 
design flows, all illustrated by a real-ish example like SchemEngine, and 
topped off by some ideas for new application areas (e.g. embedded software). 
I think the combination of 14/15 would serve this purpose well, if the author 
is willing to take things in this direction." 

"Not clear what ideas the use of streams in Daisy has compared to other 
languages (like Lava) modelling data as streams. What's the role of laziness 
and lazy cons apart from streams?" 

"... / would like the author to concentrate on paper 15. (Why have these 
been merged? They address separate unrelated issues, if I have understood 
this correctly." 
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Outline 

I. Background and context 

II. Modeling with streams in Daisy 

A. Lazy CONS demand-oriented computation, stream I/O, concurrency. 

B. Stream systems. 

C. Some modeling techniques. 

D. Distributed extensions. 

III. The SchemEngine Project 

A. Design derivation 

B. Previous studies, Schemachine 

C. VLI5P [Guttman, Ramsdell, Wand, L&5C 95] 

D. SchemEngine objectives in integrated formal analysis 

E. Toward an integrated codesign enviornment 
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Background (languages) 

75-80   Functional programming languages 
Fridman & Wise, "CONS should not evaluate its arguments" 
Applicative programming for systems 
Extensions for indeterminacy, set: [a f3 • • •] 
Suspending construction model [continuations, engines in Scheme] 

Semantics ?! 
80-85   Daisy/DSI in Unix 

Stream-based I/O From concurrency to parallelism 
O'Donneli, programming environments, hardware models 

85-90   Parallel DSI [Jeschke95] 
Language-driven architecture =4> design derivation 

90-95   Bounded speculation 
Windows on the data space 
Daisy/DSI for small-scale MIMD? 

95-00   Distributed demand propagation 
HW models as case studies 
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Background (methods) 

75-80   Functional programming methods 
Prosser &i Winkel, structured digital design, ASMs 

80-85   Compiler derivation [Wand] 
Combinator factorization =4> "machine" 
Stream systems and synchronous hardware 
Formalized synthesis 

85-90   Digital design derivation 
Functional/algebraic formalism 
GC-PLD, GC-VLSI, SECD 

90-95   DDD =4> • • • [Bose, Tuna, Rath, W.Hunt] 
Heterogeneous reasoning 
FM8502, FM9001-DDD, Schemachine 
DDD vis-a-vis PVS, coinductive types [Minor] 

95-00   Tools 
Behavior tables 
etc. 
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II. Modeling with streams in Daisy 

Animation is a key aspect of functional formalism. 

• Suspending CONS, demand oriented computation. 

• List (stream) representation of I/O 

• Concurrency construct, set 

• Windowing support 
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Suspending CONS 

Delays! No. 
Futures! No. 
Engines! Almost. 
Demand driven computation? No. 
Demand oriented computation • • 
bounded speculation 

DSi: 
o  Heap based 

symbolic multiprocessing 
o Transparent 

process management 

/^A 
f[A]*)    :757*/ 

A:: 
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Processes as streams 

0 

, 1 ;...J\    1 N 
Zs; input N; i— inc —i^ —-...43210 

0 —- 1 output N; 
N.-=N+1 

1 

—~. ..43210 1      1 > 

F:n =  [n ! F:inc:n] 

 1       1 -"I  

N =  [0  !     (map:inc):N] 

/ — — / — / — -^   C F:inc:n y 

/ 
/ 

/ 
/ 

/ 
0 1 2 
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Stream (i.e. lazy-list) based I/O 

I/O synchronization and suspension coercion use the same synchronization 
mechanism (e.g. a presence bit) 

keyboard events 

console   prompts i 

stream of characters 

stream of tokens 
prsis 

stream of s—expressions 
evlst 

stream of values 
prsos 

stream of tokens 

stream of characters 

display events 

s 
0 

0 

H 
screen:console:prompt 
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NOT s (map:not) 

OR B (mapxpsior) 

RSFF  =   \[S  R]. 
rec 

Qh  »   [0   !   OR:[S  N0T:Q1]] 
Ql   «=   [1   i   OR: [S  NOT:Qh]] 

in 
[Qh Ql] 

bit-filter «=  \ [C   !   Cs] . 
if:[   saine?:[C  "0"]    [0   !   bit-filter:Cs] 

same?:[C  "1"]    [1   !  bit-filter:Cs] 
bit-filter:Cs 

] 

xps: 
RSFF; [bit-filter;console:''[NL] S;   * 

bit-filter:console:"|NL] R;   "] 

Q.h 
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& xps: 
RSFF; [bit-f ilter;console; "[Nil S;   " 

bit-filter;console:"[NL] R:   "] 

[ 
S;   00000000 
[1   0]    [ 

R:   00011100 
0]    [1   0]    [1   0]    [1  1]    [0   1]    [0   1]    [0   1] 

S;   000111000 
[0 1] [0 

R: 000000000 
1] [0 1] [0 1] [1 1] [1 0] [1 0] [1 0] [1 0] 

S: 
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Widget devices: 

wndi: name —>■ char* 

wndo: [name, char*] -^   [] 

Also:   filei/o, 
socketi/o*, 
execi/o*, ... 

wndot[ "[Qh Ql]' 
prsos: 
scnos: 
xps: 

(1D1X176.U1 

RSFF:[   bitfilter:vmdi:"S" 
bitfilter:vmdi:"R"   11 
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Concurrency 

Implicit through bounded speculation 

Explicit through (constructs such as) set 

• Notation: expression A, computation a, result a. 

• set -.iA B C] constructs list object L = [a /? 7] 

• L becomes manifest as {.a h cl, or ih a c'\, or ih c a], etc., 

• There is an imprecise operational relationship with computational effort. 

• Semantics (?!) 
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let [Qh Ql] = RSFF:[ bit-filterrwndi:"S" 
bit-filter:wndi:"R" ] 

in set: [ wndo:["Qh" bit_to_chr:Qh] 
vmdo:["Ql" bit_to_chr!Ql] 
consume:wndi:"Click_CLOSE_to_terminate' 

FHe'window,''' ' ,"'";"*■■;■■• ■■'■ .■,^,,,-.,,— ...—™~-,..-..-.,„ -^..: ,.-.-.,,,.,..,.... 

k)ooo 
nooo 

Cidse_lo_TermInale 

  

-] 

1111 
1100 
0000 
0111 
1100 
0000 
0 

1 Close j| 

rot 
0000 
0111 
nil 
1100 
0111 
nil 
1 
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More techniques, examples 

• Time stamping prompts 

• Synchronizing windows 

• Dataflow 

• Asynchronous interactions, merge and split 

• Distributed modeling; sockets and pipes 

• Scripting? 
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III. The SchemEngine Project 

t^HiPii!4Myi^ W^ 
Objectives [Johnson, lUTR 544] 

• Advancing design derivation • Heterogeneous reasoning 

• System-level formal analysis • Embedded applications (1?) 

• From semantics to hardware • Foundations for high-confidence 

Indiana University Compuler Science Department System Design Methods Laboratory Steven D Johnson DCC 2002  17 

DDD studies In language-driven architecture 

www. cs. indiajia. edu/hmg/ 

• Garbage collectors in PLDs, VLSI, FPGAs [Boyer 86-90] 

• SECD computer [Wehrmeister 89] 

• Schemachine [Burger 94] 

The bigger picture 

• Compiler correctness [Wand, Clinger 80-85] 

• Compiler derivation [Wand 80-85] 

• Scheme based methodology and pedagogy 

• Codesign tools 
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. CPU, GC, ALLOC, INIT derived 
with DDD 

• CPU is naive 

• Memory system tuned to GC 

• PLDs, mux-based FPGAs, 
DRAM simms. 

• Codesign using Scheme and 
Logic Engine 

-Spec, models 

— Derived models 

- Staging to hardware 

OLD NEW 

•ddr data •ddr data 

^ 
1 i 

S 

1 
read data OLDiddr 

NEW addr 

2fOm 

NEW 
semispace 

OLD 
semispace 

II 

TL 

11 

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002   19 

Relationshop to VLISP [Guttman, Ramsdell, Wand, L&SC 95] 

Scheme Semantics 

(combinator factorization) 

Compiler Machine 

Machine + heap 

(data refinement) 

(system factorization) 

Target architecture System model 

I (formalized synthesis) 

Hardware implementation 
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Pending issues 

• Retargetting Schemachine (Virtex, SDRAM?), cores 

• Advancing CPU design 

• Verification of system-level properties 

• Behavior table case study 

• Synchronization abstractions 

- Hierarchical clocks 

— Bisimulation modulo protocols 

- Interface abstraction 

— Software factorization 

• Algorithmic correctness proofs 

• Integrating modeling, derivation, and co-design 

• Close with VLISP 

• Embedded resource management 

• Java 
Indiana University Compuler Science Department System Design Methods Laboratory Steven D Johnson DCC 2002   21 
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Abstract 
In previous work we have demonstrated how the functional language SAFL can be used 

as a behavioural hardware description language. Other work (such as fj,FP and Lava) has 
demonstrated that functional languages are apposite for structural hardware description. 

One of the strengths of systems such as VHDL and Verilog is their ability to mix structural- 
and behavioural-level primitives in a single specification. Motivated by this observation, we 
describe a unified framework in which a stratified functional language is used to specify hard- 
ware across different levels of abstraction: Lava-style structural expansion is used to generate 
acyclic combinatorial circuits; these combinatorial fragments are composed at the SAFL level. 
We demonstrate the utility of this programming paradigm by means of a realistic case-study. 
Our tools have been used to specify, simulate and synthesise a DBS encryption/decryption 
circuit. Area-time performance figures are presented. 

1    Introduction 
Hardware description languages (HDLs) are often categorised according to the level of abstraction 
they provide. Behavioural HDLs focus on algorithmic specification and attempt to abstract as 
many low-level implementation issues as possible. Most behavioural HDLs support constructs 
commonly found in high-level programming languages (e.g. assignment, sequencing, conditionals 
and iteration). In contrast. Structural HDLs allow a hardware engineer to describe a circuit by 
specifying its hardware-level components and their interconnections. The process of automatically 
translating a Behavioural HDL into a Structural HDL is often referred to as high-level synthesis. 

Commercially the two most important HDLs are Verilog and VHDL [8, 7]. A contributing 
factor to the success of these systems is their support for both behavioural and structural-level 
design. The ability to combine behavioural and structural primitives in a single specification 
offers engineers a powerful framework: when the precise low-level details of a component are not 
critical, behavioural constructs can be used; for components where finer-grained control is required, 
structural constructs can be used.^ However, the flip-side is that by supporting multiple levels 
of abstraction both Verilog and VHDL are very large languages which are difficult to analyse, 
transform and reason about. 

In previous work we have designed SAFL [11], a behavioural HDL which supports a functional 
programming style. An optimising high-level synthesis system has been implemented which com- 
piles SAFL specifications into structural Verilog [8]. (We map the generated Verilog to silicon 
using commercially available RTL compilers.) Other researchers have demonstrated that func- 
tional languages are powerful tools for structural hardware specification [19, 14, 3]. In this paper 

'Note the analogy with embedding assembly code in a higher-level software language. 



we present a system which integrates both structural- and behavioural-level hardware design in a 
pure functional framework. Our technique involves embedding a functional language designed for 
structural hardware description into SAFL. 

The remainder of this paper is structured as follows. After surveying related work (Section 2) 
we give a brief overview of the SAFL language (Section 3). Our mechanism for embedding Lava- 
style structural expansion in SAFL is then presented (Section 4). This methodology is demon- 
strated by means of a realistic case-study in which a fully functional DES encrypter/decrypter is 
specified (Section 5). 

2    Related Work 

There is a large body of work on using functional languages to describe hardware at the structural 
level. Notable systems in this area include /zFP [19], HDRE/Hydra [14], Hawk [9] and Lava [3]. 
The central idea behind each of these systems is to use the powerful features found in existing 
functional languages (e.g. higher-order functions, polymorphism and lazy evaluation) to build up 
netlists from simple primitives. These primitives can be given different semantic interpretations 
allowing, for example, the same specification to be either simulated or translated into a netlist. 
However, whilst this technique is obviously appealing, there are problems involved in generating 
netlists for circuits which contain feedback loops. The difficulty is that, in a pure functional 
language, a cyclic circuit (expressed as a series of mutually recursive equations) naturally evaluates 
to an infinite tree preventing the netlist translation phase from terminating. 

A number of solutions to this problem have been proposed: O'Donnell advocates the explicit 
tagging of components at the source-level [15]. In this system the programmer is responsible for 
labelling distinct components of a circuit with unique values. Whilst this allows a pure functional 
graph traversal algorithm to detect cycles trivially (by maintaining a list of tags which have 
already been seen) it imposes an extra burden on the programmer and significantly increases 
potential for manual error (since it is the programmer's job to ensure that distinct components 
have unique tags). Lava [3] also uses tagging to identify cycles, but employs a state monad [20] to 
generate fresh tags automatically. Although this neatly abstracts the low-level tagging details from 
the designer, Claessen and Sands argue that the resulting style of programming is "unnatural" 
and "inconvenient" [5]. In the same paper, Claessen and Sands propose another solution which 
involves augmenting Haskell (the functional language in which Lava is embedded) with immutable 
references which support a test for equality. This extension makes graph sharing observable at the 
source-level but, although it is shown that many useful laws still hold, full equational reasoning is 
no longer possible—for example, ^-reduction no longer preserves equality. 

In this paper we present an alternative approach. By only allowing the description of acyclic 
circuits through Lava-style structural static expansion and then combining these circuit fragments 
at the SAFL level we facilitate the pure functional specification of complex circuits which can 
contain feedback loops. We have not solved the observable sharing problem; instead we have 
eliminated it: since cycles are not permitted at the structural level we do not have to worry 
about infinite loops being statically expanded. Conversely, since feedback loops are represented 
as tail-recursive calls at the SAFL-level there is no need to introduce impure language features. 

Although most of the work on using functional languages for hardware description focuses on 
the structural level some researchers have considered using functional languages for behavioural 
hardware description. Johnson's Digital Design Derivation (DDD) system [4] uses a scheme- 
like language to describe circuit behaviour. A series of semantics-preserving transformations are 
presented which can be used to refine a behavioural specification into a circuit structure; the 
transformations are applied manually by an engineer. This is a different approach to hardware 
design using SAFL [11] where, although semantics-preserving transformations are used to ex- 
plore architectural tradeoffs (including allocation, binding and scheduling [6]) at the source-level, 
the resulting SAFL specification is fed into an optimising compiler which generates a structural 
hardware design automatically. 



3    Overview of the SAFL Language 

SAFL has syntactic categories e (term) and p (program). First suppose that v ranges over a 
set of constants. Let x range over variables (occurring in let declarations or as formal pa- 
rameters), a over primitive functions (such as addition) and / over user-defined functions. For 
typographical convenience we abbreviate formal parameter lists {xi,.. .,Xk) and actual parameter 
lists (ei,... ,efc) to f and e respectively; the same abbreviations are used in let definitions. Then 
the abstract syntax of the core SAFL language can be given in terms of recursion equations over 
programs, p, and expressions, e: 

e    ::—   t; | a; | if ei then 62 else 63 | let £ = e in CQ | 

a{ei,...,earityia)) I /(ci, ■ • •, CarityC/)) 

p   ::=    fiin/i(x)=ei   ...   fun/„(f) = e„ 

It is sometimes convenient to extend this syntax slightly. In later examples we use a case- 
expression instead of iterated tests; we also write e[n:m] to select a bit-field [n. .m] from the 
result of expression e (where n and m are integer constants). 

There is a syntactic restriction that whenever a call to function fj from function /, is part 
of a cycle in the call graph of p then we require the call to be a tail call.^ (Note that calls to a 
function not forming part of a cycle can occur in an arbitrary expression context.) This ensures 
that storage for the variables and temporaries of p can be allocated statically—in software terms 
the storage is associated with the code of the compiled function; in hardware terms it is associated 
with the logic to evaluate the function body. 

The other main feature of SAFL, apart from static allocatability, is that its evaluation is 
limited only by data flow (and control flow at user-defined call and conditional). Thus, in the 
form let x = (ei,..., e^) in CQ or in a call /(ci,..., e^) or a(ei,..., e^), all the Ci (1 < i < fc) 
are evaluated concurrently. In the conditional if ei then 62 else 63 we first evaluate (only) ei; 
one of 62 or 63 is evaluated after its result is known. SAFL has call-by-value semantics since 
eager evaluation offers a greater opportunity for parallelism (i.e. we can execute a function call's 
arguments in parallel without worrying about strictness). 

Although up to this point we have referred to SAFL as a behavioural language, it is also capable 
of capturing some structural aspects of a design. We say that SAFL is resource-aware to indicate 
that a single user-defined function definition at the source-level corresponds to a single hardware 
resource at the circuit-level. In this context multiple calls to the same function corresponds to 
resource sharing^. We use SAFL-level transformations to express architectural tradeoffs such as 
resource duplication/sharing and hardware/software co-design [12]. In essence these transforma- 
tions preserve a specification's extensional semantics (the result returned) whilst changing the 
intensional semantics (how the circuit is structured). A more in-depth description of the SAFL 
language and its associated silicon compiler can be found in our recent survey paper [13]. For the 
purposes of this document we provide a short example which illustrates the main points: 

fun mult(x:16,  y:16,  ace:32):32 = 
if   (x=0   I   y=0)  then ace 

else mult(x«l,  y»l,  if y[0:0]  then acc+x else aee) 

fun f(x:16):32 = mult(x,  x,  0)  + mult(13,  x,  0) 

From this specification, two hardware resources are generated: a circuit, Hnnit, corresponding to 
mult and a circuit, Hf, corresponding to f. The two calls to mult are not inlined: at the hardware 
level there is only one shared resource, F^uit, which is invoked twice by iJcube- The tail-recursive 
call in the definition of mult is synthesised into a feedback loop at the circuit level. Since function 

^Tail calls consist of calls forming the whole of a function body, or nested solely within the bodies of let-in 
expressions or that are the consequents of if-then-else expressions. 

^Our optimising compiler automatically deals with sharing issues by statically scheduling access to resources 
where it can, and generating arbiters to perform scheduling dynamically otherwise [18]. 



arguments are evaluated concurrently, the two shift operations occurring in the recursive call to 
mult are evaluated in parallel along with the conditional test and possibly, depending on the 
conditional branch taken, the addition operation. 

Each S AFL variable is annotated with a bit-width at its point of introduction. We use the form 
x:u; to indicate that variable x has width w. Note that the widths of function result types are also 
specified exphcitly (using the form fun f (...) :w;). Widths of constants can either be specified 
explicitly or, more usually, inferred from their local context. As part of a simple type-checking 
phase our SAFL compiler ensures that for each function call, /(f), the widths of arguments, x 
match those specified in the signature of /. 

4    Embedding Structural Expansion in SAFL 

Resource awareness allows SAFL to describe the system-level structure of a design by mapping fun 
declarations to circuit-level functional units. In contrast, systems such as /uFP and Lava offer much 
finer-grained control over circuit structure, taking logic-gates (rather than function definitions) as 
their structural primitives. We are not arguing that either approach is better: in practice both 
are appropriate depending on the type of hardware that is being designed. Motivated by this 
observation, we present a framework which integrates Lava-style structural expansion with SAFL. 

Section 4.1 outlines our system for fine-grained structural hardware description which, for 
the purposes of this paper, we will refer to as Magma^. In Section 4.2 we show how Magma is 
integrated with SAFL. 

4.1    Building Combinatorial Hardware in Magma 

An argument in favour of Lava, Hydra and other similar systems, is that since they are embedded in 
existing functional languages they are able to leverage existing tools and compilers. Furthermore, 
use of non-standard interpretation of basis functions means that the same compiler can be used 
to perform both hardware simulation and synthesis. These compelling benefits lead us to adopt 
a similar approach. However, in contrast to Lava, which is embedded in Haskell [1], we choose 
to embed Magma in ML [10]. The choice of ML is fitting for two main reasons: firstly, since we 
only wish to describe acyclic circuits, ML's strict evaluation is appropriate for both simulation 
and synthesis interpretations; secondly, since SAFL also borrows much of its syntax and semantics 
from ML, both Magma and SAFL share similar conventions (an important consideration when we 
are dealing with specifications containing a mixture of both Magma and SAFL). 

4.1.1    An ML module system primer 

In order to understand the workings of Magma some familiarity with the ML module system is 
required. Whilst we do not describe the full details of the ML-module system here, this section 
is sufficient to allow readers unfamiliar the module system to understand the remainder of this 
paper. For more information the reader is referred to a more in-depth survey [16]. 

The basic element of ML's module system is the structure. The structure provides a way of 
packaging both type and value (including function) definitions into a single entity. An important 
feature of structures is that they provide a hierarchical name-space. For example, if a function, /, 
is defined in a structure S we refer to it as S.f. 

An ML signature provides a mechanism to specify interfaces. A signature contains a set 
of name and type-declarations. One can use a signature to constrain a structure using the ":" 
operator. Only values whose types are explicitly declared in the constraining signature are visible 
outside the constrained structure. 

Finally, the ML module system provides functors. A functor is essentially a parameterised 
structure, dependent on another structure which is provided externally. For example, consider the 

"•AS it is a restricted form of Lava. 



ignature BASIS = 

sig 
type bit 
val bO  : bit 
val bl  : bit 
val orb : bit * bit -> bit 
val andb : bit * bit -> bit 
val notb : bit * bit 
val xorb : bit * bit -> bit 

end 

Figure 1: The definition of the BASIS signature (from the Magma Ubrary) 

following (contrived) code fragment which defines a functor, FTR, parameterised over a structure, 
S (where S is constrained by signature, SSIG): 

functor FTR(S:SSIG) = 
struct 

val a = S.f(3) 
end 

Passing a structure, T, into FTR yields a new structure containing a single item, a, which has 
the value T.f (3). Magma makes use of functors to parameterise hardware specifications over 
interpretations of their basis functions. This provides a convenient way of using the same code for 
both simulation and synthesis (see below). 

4.1.2    Specifying Hardware in Magma 

The Magma system essentially consists of a library of ML code. A signature called BASIS is 
provided which declares the types of supported basis functions (see Figure 1). Values bO and bl 
correspond to logic-0 (false) and logic-1 (true) respectively. Functions orb, andb, notb and xorb 
correspond to logic functions or, and, not and xor. Two structures which implement BASIS are 
provided: 

• SimulateBasis provides a simulation interpretation. We implement bits as boolean values; 
functions orb, andb etc. have their usual boolean interpretations. 

• SynthesisBasis provides a synthesis interpretation. We implement bits as strings repre- 
senting names of wires in a net-list. Functions orb, andb etc. take input wires as arguments 
and return a (fresh) output wire. Calling one of the basis functions results in its netlist 
declaration being written to the selected output stream as a side-effect. For example, if 
the result of calling andb with string arguments "in.wirel" and "in-wire2" is the string 
"out_wire" then the following is output to StdOut: 

and(out_wire,in_wirel,in_wire2) ; 

Figure 2 shows a Magma specification of a ripple-adder. As with all Magma programs, the main 
body of code is contained within an ML functor. This provides a convenient abstraction, allowing 
us to parameterise a design over its basis functions. By passing in the structure SimulateBasis 
(see above) we are able to instantiate a copy of the design for simulation purposes; similarly, by 
passing in SynthesisBasis we instantiate a version of the design which, when executed, outputs 
its netlist. The signature RP_ADD is used to specify the type of the ripple_add function. Using 
this signature to constrain the RippleAdder functor also means that only the ripple_add function 
is externally visible; the functions carry .chain and adder can only be accessed from within the 



signature RP.ADD = 
sig 

type bit 
val ripple.add : (bit list * bit list) -> bit list 

end 

functor RippleAdder (B:BASIS):RP_ADD = 
struct 

type bit=B.bit 
fun adder (x,y,c_in) = (B.xorb(c_in, B.xorb(x,y)), 

B.orbC B.orb( B.andb (x,y), B.aiidb(x,c_in)), 
B.andb(y,c_in))) 

fun carry_chain f _ ([],[]) = [] 
I caxry_chain f c_in (x::xs,y::ys) = 

let val (res_bit, c_out) = f (x,y,c_in) 
in res_bit::(carry_chain f c_out  (xs.ys)) 

end 

val ripple.add = carry_chain adder B.bO 
end 

Figure 2: A simple ripple-adder described in Magma 

functor. Note that the use of signatures to specify interfaces in this way is not compulsory but, 
for the usual software-engineering reasons, it is recommended. 

Let us imagine that a designer has just written the ripple-adder specification shown in Figure 2 
and now wants to test it. This can be done by instantiating a simulation version of the design in 
an interactive ML session: 

- structure SimulateAdder = RippleAdder  (SimulationBasis); 

The adder can now be tested by passing in arguments (a tuple of bit lists) and examining the 

result. For example: 

- SimulateAdder.ripple.add ([bl,bO,bO,bl,bl,bl],[bO,bl,bl,bO,bl,bl]) 
val it =   [bl,bl,bl,bl,bO,bl]     :  SimulateAdder.bit list 

Let us now imagine that the net-list corresponding to the rippler-adder is required. We start 
by instantiating a synthesis version of the design: 

- structure SynthesiseAdder = RippleAdder (SynthesisBasis); 

If we pass in lists of input wires as arguments, the ripple_add function prints its netlist to the 
screen and returns a list of output wires: 

- SynthesiseAdder.ripple.add (Magma.new.bus 5,  Magma.new.bus 5) 
and(w_l,w_45,w.46); 
and(w.2,w.l,w_44); 

and(w_149,w_55,w.l03); 
val it =   ["w.i49","w.l50","w.l51","w_152","w_153"] 

The function new.bus, part of the Magma library, is used to generate a bus of given width (rep- 
resented as a list of wires). 
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Figure 3: A diagrammatic view of the steps involved in compiling a SAFL/Magma specification 

(* Magma library block containing Magma_Code functor:  *) 

<7. 
signature RP_ADD = 

... (* as in Figure 2 *) 

functor Magma_Code  (B:BASIS):RP_ADD = 
...   (* as RippleAdder functor in Figure 2 *) 

fun multCx, y,  ace) = 
if   (x=0   I   y=0)  then ace 

else mult(x«l, y»l, 
if y[0]  then <'/. ripple_add '/,>(aec,x)  else ace) 

Figure 4: A simple example of integrating Magma and SAFL into a single specification 

4.2    Integrating SAFL and Magma 

Our approach to integrating Magma and SAFL involves using delimiters to embed Magma code 
fragments inside SAFL programs. At compile time the embedded Magma is synthesised and the 
resulting netlist is incorporated into the generated circuit (see Figure 3). This technique was 
partly inspired by web-scripting frameworks such as ASP and PHP [2] which can be embedded 
in HTML documents^. To highlight this analogy we use ASP-style delimiters "<'/." and "*/.>" to 
mark the start and end points of Magma code fragments. Our compiler performs simple width 
checking across the SAFL-Magma boundary, ensuring the validity of the final design. 

The SAFL parser is extended to allow a special type of Magma code fragment at the beginning 
of a specification. This initial Magma fragment, which is referred to as the library block, contains 
an ML functor called Magma_Code. Functions within Hagma.Code can be called from other Magma 
fragments in the remainder of the specification. Figure 4 illustrates these points with a simple 
example in which the Magma ripple adder (initially defined in Figure 2) is invoked from a SAFL 
specification. The precise details of the SAFL-Magma integration are discussed later in this section; 
for now it suffices to observe that Magma fragments are treated as functions at the SAFL-level 
and applied to SAFL expressions. 

^When a dynamic web-page is fetched the ASP or PHP code is executed generating HTML which is returned 
to the client. 



The treatment of Magma fragments is similar to that of primitive functions (such as +, -, * 
etc.). In particular, Magma code fragments are expanded in-place. For example, if a specification 
contains two Magma fragments of the form, <*/. ripple-add '/.>, then the generated hardware 
contains two separate ripple adders. Note that if we require a shared ripple_adder then we can 
encapsulate the Magma fragment in a SAFL function definition and rely on SAFL's resource- 
awareness properties. For example, the specification: 

fun addCx, y)  = <'/. ripple.add 7.>  (x.y) 
fun mult_3Cx) = add(x,  add(x,x)) 

contains a single ripple adder shared between the two invocations within the definition of the 
inult-3(x) function. Since embedded Magma code fragments represent pure functions (i.e. do 
not cause side effects) they do not inhibit SAFL-level program transformation. Thus our existing 
SAFL-level transformations corresponding to resource duplication/sharing [11], hardware/software 
co-design [12] etc. remain valid. 

Implementation and Technical Details 

Consider the general case of a Magma fragment, m, embedded in SAFL: 

<•/. m '/.>(ei,...,efc) 

where ei,...,efc are SAFL expressions. On encountering the embedded Magma code fragment, 
<*/. m '/,>, our compiler performs the following operations: 

1. An ML program, M, (represented as a string) is constructed by concatenating the library 
block together with commands to instantiate the Magma.Code functor in its synthesis inter- 
pretation (see above). 

2. The bit-widths of SAFL expressions, ei,... ,efc, are determined (bit-widths of variables are 
known to the SAFL compiler) and ML code is added to M to construct corresponding 
busses, Bi,...,Bfc, of the appropriate widths (using the Magma. newJbus library call). 

3. M is further augmented with code to: 

(a) execute ML expression, m(Bi,. ..,Bk), which, since the library block has been instan- 
tiated in its synthesis interpretation, results in the generation of a netlist; and 

(b) wrap up the resulting netlist in a Verilog module declaration (adding Verilog wire 
declarations as appropriate). 

4. A new ML session is spawned as a separate process and program M is executed within it. 

5. The output of M, a. Verilog module declaration representing the compiled Magma code 
fragment, is returned to the SAFL compiler where it is added to the object code. Our 
SAFL compiler also generates code to instantiate the module, connecting it to the wires 
corresponding to the output ports of SAFL expressions ei,... ,6^. 

In order that the ML-expression m{Bi,..., B/c) type checks, m must evaluate to a function, 
J^, with a type of the form: 

(bit list * bit list *   ...   * bit list)    ->    bit list 

with the arity of J^'s argument tuple equal to k. If m does not have the right type then a type- 
error is generated in the ML-session spawned to execute M. Our SAFL compiler traps this ML 
type-error and generates a meaningful error of its own, indicating the offending line-number of the 
SAFL/Magma specification. In this way we ensure that the bit-widths and number of arguments 
applied to <*/. m */.> at the SAFL-level match those expected at the Magma-level. 



Another property we wish to ensure at compile time is that the output port of a Magma- 
generated circuit is of the right width. We achieve this by incorporating width information corre- 
sponding to the output port of Magma-generated hardware into our SAFL compiler's type-checking 
phase. Determining the width of a Magma specification's output port is trivial—it is simply the 
length of the bit list returned when m{Bi,.. .,Bk) is executed. 

5    Case Study: DES Encrypter/Decrypter 

Appendix A presents code fragments from the SAFL specification of a Data Encryption Standard 
(DES) encryption/decryption circuit. Here we describe the code for the DES example, focusing on 
the interaction between SAFL and Magma; the details of the DES algorithms are not discussed. 
We refer readers who are interested in knowing more about DES to Scheier's cryptography text- 
book [17]. 

The library block at the beginning of the DES specification defines three functions used later 
in the specification: 

• perm is a curried function which takes a permutation pattern, p, (represented as a Ust of 
integers) and a list of bits, I. It returns I permuted according to pattern p. 

• ror is a curried function which takes an integer, a;, and a list of bits, I. It returns I rotated 
right by x. 

• rol is as ror but rotates bits left (as opposed to right). 

A set of permutation patterns required by the DES algorithm are also declared. (For space reasons 
the bodies of some of these declarations are omitted.) 

The code in Appendix A uses two of SAFL's features which have not been described in this 
paper: 

• The primitive function join takes an arbitrary number of arguments and returns the bit- 
level concatenation of these arguments. As one would expect, the bit-width of the result of 
a call to join is the sum of the bit-widths of its input arguments. 

• SAFL's type declaration allows us to construct records with named fields. Curly braces, { 
... }, are used as record constructors and dot notation (r./) is used to select a field, /, from 
record r. After type-checking our SAFL compiler translates record notation directly into 
bit-level joins and selects. (Recall that bit-level selects are represented using the e[n:m] 
notation—see Section 3.) 

Primitive functions corresponding to arithmetic and boolean operators use their standard symbols 
(e.g. +, <, =). The binary infix operator, ("), is used for bit-wise exclusive-or. 

The DES algorithm requires 8 S-boxes, each of which is a substitution function which takes 
a 6-bit input and returns a 4-bit output. The S-boxes' definitions make use of one of SAFL's 
syntactic sugarings: 

lookup e with {VQ,   ■■•, Vk} 

Semantically the lookup construct is equivalent to a case expression: 

case e of 0 => i;o   I   ...I   (A; - 1) => Vk-i  default Vk- 

To ensure that each input value to the lookup expression has a corresponding output value we 
enforce the constraint that k = 2'"-l where w is the width of expression e. Our compiler is often 
able to map lookup statements directly into ROM blocks, leading to a significantly more efficient 
implementation than a series of iterated tests. 

Before applying its substition each S-box permutes its input. We use our Magma permutation 
function to represent this permutation: <*/. perm p.inSbox '/.> (x). Other examples of SAFL- 
Magma integration can be seen throughout the specification. The keyshif t function makes use 



of the Magma ror and rol functions to generate a key schedule. Other invocations of the Magma 
perm function can be seen in the bodies of SAFL-level functions: round and main. We find the 
use of higher-order Magma functions (such as perm, ror and rol) to be a powerful idiom. 

We used our tools to map the DES specification to synthesisable RTL-Verilog. A commercial 
RTL-synthesis tool (Leonardo from Exemplar) was used to map synthesise the RTL-Verilog for 
a Xilinx Virtex-V300 FPGA. The resulting circuit utilised less than 5% of the FPGA's resources 
and could be clocked at 70MHz. Since encrypting/decrypting a block of data takes 17 cycles, a 
throughput of 260 Megabits/sec can be achieved. 

6    Conclusions and Further Work 

In this paper we have motivated and described a technique for combining both behavioural and 
structural-level hardware specification in a stratified pure functional language. Our methodology 
has been applied to a realistic example. We believe that the major advantages of our approch are 
as follows: 

• As in Verilog and VHDL, we are able to describe large systems consisting of both behavioural 
and structural components. 

• SAFL-level program transformation remains a powerful technique for architectural explo- 
ration. The functional nature of the Magma-integration means that our existing library of 
SAFL transformations are still applicable. 

• By only dealing with combinatorial circuits at the structural-level we eliminate the problems 
associated with graph-sharing in a pure functional language (see Section 2). We do not sacri- 
fice expressivity: cyclic (sequential) circuits can still be formed by composing combinatorial 
fragments at the SAFL-level in a more controlled way. 

In future work we would like to investigate using similar techniques for integrating systems 
such as Lava or Magma directly into Verilog. Whilst this would not give the formal benefits of 
our pure functional SAFL-Magma hybrid, it may help to make the tried-and-tested technique 
of embedding a structural hardware specification using functional languages more accessible to 
engineers working in industry. 
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Appendix A: SAFL specification of a DES encrypter/decrypter 

(* Magma Library block *) 

signature DES = 
sig 

val perm: int list -> 'a list -> 'a list 
val ror:  int -> 'a list -> 'a list 
val rol: int -> 'a list -> 'a list 

val p_compress : int list 
val p_key     : int list 

val p_inSbox  : int list 
end 

functor Magma_code (B:BASIS):DES = 
struct 

(* DES permutation patterns ... *) 

val p.initial  = [58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4, 
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8, 
57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3, 
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7] 

val p.key     = [57,49,41,33,25,17,9,1,58,50,42,34,26,18, 
10,2,59,51,43,35,27,19,11,3,60,52,44,36, 
63,55,47,39,31,23,15,7,62,54,46,38,30,22, 
14,6,61,53,45,37,29,21,13,5,28,20,12,4] 

val p.pbox     = [16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10, 
2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25] 

val p_compress = [ ... <snip> ... ] 
val p_expaiision = [ ... <snip> ... ] 
val p_final    = [ ... <snip> ... ] 
val p_inSbox   = [1,5,2,3,4] 

(* Higher-order permutation fiinction — given a list of bits 
and a pattern it returns a permuted list of bits: *) 

fun perm positions input = 
let val inlength = length input 

fun do_perm []_=[] 
I do_perm (p::ps) input = 

(List.nth (input,inlength-p))::(do.perm ps input) 

in do_perm positions input 
end 

(* Rotate bits right by specified amount: *) 
fun ror n 1 = 

let val last_n = rev (List.take (rev 1, n)) 
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val rest  = List.take (1, (length l)-n) 

in last_n Q rest 
end 

(* Rotate bits left by specified amount: *) 

fun rol n 1 = 
let val first_n = List.take (1, n) 

val rest   = List.drop (1, n) 
in rest ® first_n 
end 

end 

(* Definitions of S-Boxes (implemented as simple lookup tables) *) 

fun sboxl(x:6):4 = 
lookup <■/, perm p_inSbox */,> (x) 

with {14,4,13,1.2,15,11,8,3,10,6,12,5,9,0,7, 
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8, 
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0, 
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13} 

fun sbox2(x:6):4 = 
lookup <'/. perm p_inSbox '/,> (x) 

with {  ...  <snip> ... } 

fun sbox3(x:6):4 = .. . 

fun sbox8(x:6):4 = . . . 

(* Do s_box substitution on data-block: *) 

fun s_sub(x:48):32 = 
join( sboxK x[47:42] ), sbox2( x[41:36] ), 

sbox3( x[35:30] ), sbox4( x[29:24] ), 
sbox5( x[23:18] ), sbox6( x[17:12] ), 
sbox7( x[ll:6] ), sbox8( x[5:0] )) 

(* Define a record which contains the left and right halves 
of a 64-bit DES block and the 56-bit key. *) 

type round_data = record {left:32, right:32, key:56} 

(* Successive keys are calculated by circular shifts. The degree 
of the shift depends on the round (rd). 
We shift either left/right depending on whether we are 
decrypting/encrypting. Note that the inline pragma ensures that 
keyshift is never treated as a shared resource. *) 

inline fun keyshift(key_half:28,rd:4,encrypt:l):28 = 

define val shift_one = (rd=0 or rd=l or rd=8 or rd=15) 

m 
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if encrypt then 
if sliift_one then <*/. rol 1 '/.> (key.half) 

else <•/. rol 2 '/.> (key.half) 
else 

if rd=0 then key.half 
else if shift_one then <*/, ror 1 7.> (key.half) 

else <•/, ror 2 '/.> (key.half) 
end 

(* A single DES round:  *) 

inline fun round(bl:round.data,rd:4,encrypt:l):round_data = 
let 

val Ikey = keyshift(slice(bl.key,55,28),rd,encrypt) 
val rkey = keyshift(slice(bl.key,27,0),rd,encrypt) 
val keybits  = <'/. perm p.compress '/,> ( jo in (Ikey, rkey) ) 
val new.right = let val after.p = <*/, perm p.expansion */,>(bl.right) 

in s.sub (after.p " keybits " bl.left) 
end 

in {left=bl.right, right=new_right, key=join(Ikey,rkey)} 
end 

(* Do 16 DES rounds: *) 

fun des(c:4, rd:round_data,encrypt:l):round.data = 
let 

val new.data = round(rd, c, encrypt) 
in if c=15 then new.data 

else des(c+l, new.data,encrypt) 
end 

(* Apply Key-Permutation to incoming 64 key bits, 
apply the initial permutation to incoming data-block, 
do 16-rounds of DES on permuted data-block, 
apply the final-permutation and return the encrypted block *) 

fun main(block:64,key:64, encrypt:1):64 = 
let 

val block.p = <*/. perm p.initial '/,> (block) 
val realkey = <'/. perm p.key */,> (key) 
val output = des(0:4, {left=slice(block.p,63,32), 

right=slice(block_p,31,0), 
key=realkey}, encrypt) 

in <*/, perm final '/,> (join(output.right, output.left)) 
end 
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As a consequence of the fact that many combinational design automation 
problems are NP- or coNP-complete, one fundamental approach to their solution 

Ithr?  H   7    . ? ^ P™P°«i«o^^l logic formulas, and apply some proof 
method to decide whether the formulas always evaluate to true 

However there exists a plethora of individual techniques for discharging 
proposition^ proof conditions, including (but not Hmited to) the Davis-Putnam- 
Loveland-Logeman method, Stalmarck's method. Binary Decision Diagrams, and 
rewriting. Each proof technique has a particular characteristic in terms of space 
and time behaviour, sensitivity to the size of the system, and the particular 
domain it will work the best for. As a result, it is not unusual to combine tech- 
niques in different ways when solving particular classes of combinational design 
automation problems. ° 

Unfortunately, there does not exist an individual composition of techniques 
that will be sufficient to deal with all problem instances at all future points in 
time. As the design climate changes, and the structure and complexity of the 
designs at hand change, every approach that is made up from a composition of 
individual methods will thus have to be modified accordingly, 

k nt!/.™'''^ Technology, we develop and maintain a plug-in proof engine that 
is used to solve combinational logic problems in design automation tools This 
proof engine, PROVER CL, is delivered with default composite analyses for a 
number of domains. 

As developers and maintainers of PROVER CL, we need to be able to ex- 

InZJ T r"" T^^""""' °^ *^' ^'^^^'* ^^^'^'^^^ ^° tl^^t ^e c^n keep them 
updated. We also need to be able to develop new analyses that work well in new 
problem domains, and on problems with particular characteristics. It is thus 
very important that our proof engine framework is constructed in such a way 

Imlnt nf ff T "V^of^^^"^'^ '°'''*'"'* '^""^P"^'*^ ^^^ly«^^ ^i* a minimurn amount of effort, and (2) we can get the maximum amount of synergy between 
the individual methods. ^^ ueiween 

In this talk, we present an approach to addressing these issues that Prover 
iechnology has been working on for quite some time-initial results were already 
reported in early 2000 [CSOOj. '^'ie.iuy 

Our approach builds on two key ideas. First of all, we structure our proof 
engine in such a way that we view individual proof techniques as strategies; that 
IS, functions between different proof states. Second, we define our strateg es to 



be compositional in the seme that they can be combined In an, orte to form 

more powerful proof-search ^^^p^ „„tol,lng our framework, and 

preJlitw^rSrulaTptfl^SmW^^ro^^^^^^^^^^^ 
E^a:iLmethod^LBa*P..an>L„^^^^^^^^ 

nitude speedups compared '»'"<^';f^^/^X *T^^^^^ come 

of our industrial partners. 
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Abstract. Several techniques for formal verification of synchronous cir- 
cuits depend on the computation of the reachable state space (RSS) of 
the circuit. Computing the exact RSS may be prohibitively expensive. 
In order to simplify the computation, the exact RSS can be replaced by 
an over-approximation of it, called the ORSS. The resulting verification 
computation will be conservative, and the larger the ORSS, the more 
conservative the approximation. A common technique for computing the 
ORSS is to replace some of its state variables by inputs. In this paper, 
we present a new approach based on variable abstraction using a three- 
valued logic. We also present a way to reduce the over-approximation by 
using structural information given by compilers of high-level languages 
like Esterel, ECL or SyncCharts. A real example of an avionic system is 
used to show the improvements that variable abstraction can bring. 

1    Introduction 

This paper deals with formal verification of synchronous designs derived from 
programs written either in Esterel [4,5], ECL [15] or SyncCharts [1] languages. 
These languages are well suited for control-dominated programs, both for hard- 
ware and software targets. ECL and SyncCharts programs can be translated 
into Esterel. The Esterel compiler translates such programs into the pair of a 
sequential circuit and a data path. 

Formal verification is currently performed on the control part of the program, 
by XEVE [2], a BDD-based verifier publicly available, or the verifier built-in the 
Esterel Studio tool [14]. The properties are expressed by synchronous bug ob- 
servers [20], i.e. auxiliary signals that are emitted by the circuit in case of a 
safety property violation. Verification amounts to checking that observer sig- 
nals can never be emitted. To check observers, XEVE uses a forward reachabil- 
ity technique well-adapted to Esterel control-dominated programs: it iteratively 
computes the reachable state space of the circuit, or RSS, checking at each step 
that observers cannot be emitted for any reachable state and any legal input. 
Although this approach has proved successful in handling quite large designs, 
it is limited by the potential explosion of BDDs during the computation of the 
RSS. 



This paper is devoted to improvements of the verification algorithm based on 
variable abstraction. The global idea is to use over-approximations (ORSS) of the 
exact RSS, which is usually an overkill to prove safety properties. Verification 
using the ORSS is conservative: if a property is true for an ORSS, it is true 
for the original circuit, but a given ORSS may not prove the desired property. 
An ORSS can be obtained directly from the structure of the source program, as 
explained in [25], but its impact on verification performance is relatively limited. 
A better approach to simplify verification is to reduce the number of variables and 
functions occuring during the BDD computations. We study two techniques for 
this purpose: register inputization, in which a state variable is simply made free in 
the RSS, and register abstraction, in which we use a three-valued logic. Register 
inputization views some registers as free combinational variables, losing their 
state-holding contents. Register abstraction uses a three-valued logic and makes 
some register variables completely disappear from the BDD, which is attractive 
to improve computation times, but is a stronger abstraction. Both techniques 
can be combined with the aforementioned structural ORSS ones. We show the 
efficiency of our method on a real avionics system, the fuel management of a twin- 
engine jet aircraft from Dassault Aviation, and present two other experiments. 

Section 2 presents the algorithms for RSS computation. Section 3 presents 
the ORSS abstraction techniques. Section 4 presents the application example, 
and section 5 concludes. 

1.1    Related Work 

One of the most studied approach to ORSS computation is based on FSM decom- 
position: in [11], Cho et al. proposed approximate RSS computation algorithms 
that decompose the set of state variables into disjoint subsets. Each subset is 
used to compute a portion of the RSS, and the cross-product is taken afterwards 
for an ORSS. Extension to non-disjoint subsets was described by Govindaraju 
et al. in [16], and refined in [17] through addition of auxiliary state variables 
that increase correlation between subsets. Such techniques perform a posteri- 
ori quantification, as state variables from other subsets are replaced by inputs, 
which can turns out to be very expensive. 

Three-valued logic are often used in model checking partial or approximated 
systems. For instance, [6] (refined in [7]) used three-valued logic in order to 
interprete modal logic formulas on partial Kripke structures. However, this work 
and its refinement ([19], [18],...) operates on labeled transition systems which are 
explicitly explored, while our analysis are performed on systems represented as 
Boolean circuits, symbolically explored using BDD-based techniques. Although 
applications to symbolic techniques were considered, this has not yet been done 
to the best of our knowledge. 



2    Background 

2.1 Finite State Machines 

Let B = {0,1} be the Boolean set. The FSMs we consider are completely spec- 
ified Mealy machines, defined as tuples {m,n,p,5,u:,T,J), where: 

— m is the number of inputs. 
— n is the number of state variables (registers). 
— p is the number of outputs. 
— 6 : B™ X B" -+ B" is the vector of elementary register transition functions. 
— w : B'" X B" —> BP is the vector of elementary output functions. 
— I: B" —> B is the characteristic function of the set of initial states. 
— J : B™ —» B is the characteristic function of the valid input space. For 

instance, if some inputs are implied by others, or if some pairs of inputs are 
mutually exclusive, the whole input space would not be valid. 

We use the same notation for a set or its characteristic function. Thus, 
J {x) = 1 means x Q J. Also, for the sake of clarity, we omit the arrow on 
top of vectorial functions or variables. Negated expressions are either prefixed 
by -1 or overlined. 

2.2 Standard RSS Computation 

The usual way to compute the RSS of a FSM symbolically [9,12], is to find the 
limit of the converging sequence of finite sets defined by the following equations: 

RSSo = I 

RSSfc+i = RSSfc U 6{J, RSSfc) (1) 

where we use the standard extension of function to sets: 

6{X,Y) = {6{x,y)\x&X,y€Y} 

Using HDDs for characteristic functions, (1) becomes: 

RSSfc+i = RSSfc U { r' 6 B" I 3r € RSSfc , 3i € B" . J(z) Ar' = 5[i,r)}    (2) 

In [12], Coudert and Madre introduced the image operator Img(/, x), which 
computes the image of the vectorial function / on the state set of characteristic 
function x^'- 

Img(/,x) = Ar'.f 3r,i.x(r) A J(J) A f /\ rj, = /fc(i,r)j j (3) 

^ Xr'.E is the standard A-calculus notation for the unnamed function of body E, with 
argument r'. 



Algorithm 1 presents an outline of the computation of RSS for a given FSM. 
The main iteration that computes successive RSSfc sets is from line 4 to 17. Line 
5 builds the domain for each iteration, based on most recently reached states and 
the set of valid inputs J. Lines 8 to 10 contain the loop that builds the transition 
function for the current iteration domain. Line 9 builds the function associated 
with a single register, restricted for the current domain. Line 10 associates this 
function with its register variable for the next state and combines it with the final 
transition function. Line 12 applies the transition function to the last reachable 
state set. Line 13 performs existential quantifications over the set of old register 
variables and inputs. Line 14 substitutes the new register variables by the old 
ones, in order to obtain a function over the set of old register variables for the 
next iteration. Finally, Hne 15 computes the sets of new states and line 16 adds 
this set to the final reachable state set. Iteration stops when the set of new states 
is empty. 

Note that this is only a crude implementation. In the next version, currently 
under development, the complete transition function is actually never built as 
we do in hnes 8 to 10, which may cause the computation to blow-up quickly. 
The image is computed over partitions of the transition function and existential 
quantifications are performed on-the-fly rather than in a simple pass, as we 
mention in line 13. However, it is beyond the scope of this article to discuss such 
improvements. 

1 function RSS( FSM ) 
2 Result *- I 
3 NewStates <- I 
4 repeat 
5 Domain *— J A NewStates 
7 (5^1 
8 for i e [l..n] 
9 Si *— BuildRestrictedRegisterFunction( i, Domain ) 
10 6 ^ S A (NewRegVariable(i) = Si) 
11 end for 
12 Image *— S A NewStates 
13 Image <- Quantify( Image, OldRegVariables+InputVariables ) 
14 Image <- Substitute( Image, NewRegVariables, OldRegVariables ) 
15 NewStates «— Image A -iResult 
16 Result ♦— Result V Image 
17 until NewStates = 0 

Algorithm 1: RSS fixed-point computation 

Example Using Algorithm 1, we can enumerate the reachable states of the 
circuit of Figure 1. The initial state (1,0,0,0) of the circuit is indicated by 
the values at the bottom of the registers. The first iteration reveals the new 



state (0,1,0,0); the second iteration reveals the new state (0,0,1,0); the third 
iteration reaches the fixpoint: the three registers ri, r^ and r^ are exclusive and 
r^ is always 0. 

Figure 1: A sequential circuit 

RSS Computation Complexity Analysis In this section, the complexity is 
expressed with respect to the BDD size and in the worst case. 

The cost of -1 is constant and the cost of V, A is polynomial [9,12]. Unfor- 
tunately, the cost of the Img operator, used in hne 13 in the Algorithm 1, is 
exponential with respect to the number of variables, notably because of nested 
existential quantifications. Informally, while 3a:./(x) amounts to computing 
/(0)+/(l), 3a;,2/. /(x, y) amounts to computing /(0,0)+/(0,1)+/(1,0)+/(l, 1), 
and so on. 

In the sequel, we will study techniques to improve the RSS computation by 
reducing the number of variables to apply a posteriori quantification to, in some 
case at the expense of over-approximation. 

3    ORSS Computation 

3.1    Replacing State Variables by Inputs 

Replacing state variables by inputs can improve the RSS computation: there 
are fewer register functions to build, combine and manipulate during the image 
computation, and fewer register variables to substitute. Replacing state variables 
by inputs weakens the constraints between these variables, leading to an over- 
approximated result. 

Note that the number of a posteriori existential quantifications to perform 
remains the same. 



When a state variable is replaced by an input, the correlation between mul- 
tiple occurrences of this variable in an expression is maintained. This is the case 
in reconvergent fanout in a circuit. For instance, in Figure 2, there is a circuit 
fragment generated from a statement like present I then ... else .... The go wire, 
which determines whether a statement is active, is combined with the input / 
presence wire. Even if the state variable driving this go wire is replaced by an 
input, we are still able to determine that then and else branches are exclusive. 

go- D 
D 

■then 

else 

Figure 2: Generated nets for a present I then ... else ... statement 

Example With the example circuit of Figure 1, suppose we want to check that 
n A r2 = 0. We can replace r4 with an input and apply the standard RSS 
computation algorithm: from the initial state (1,0,0), the first iteration reveals 
the new state (0,1,0), the second iteration reveals the new state (0,0,1) and the 
third iteration reaches the fixpoint. We can still prove that ri A r2 = 0, but the 
computation required fewer register functions. 

Conversely, if we choose to replace rs with an input, starting from the' initial 
state (ri,r2,r-4) = (1,0,0), the first iteration reveals the new states (0,1,0) and 
(1,1,0), the second iteration reveals the new state (0,0,0) and the third iteration 
reaches the fixpoint. We cannot prove that ri A rj = 0. 

3.2    Variable Abstraction using Ternary-Valued Logic 

Three-Valued Logic As a refinement of Malik's work [23], Shiple, Berry and 
Touati [24] used Scott's three-valued logic to analyse cyclic circuits. Scott's three- 
valued logic is built upon the usual two-valued Boolean logic by adding a third 
value, noted 1, which means that a variable is undefined, and by extending usual 
Boolean operators. 

Similarly, we propose to introduce a third value meaning that a variable is 
defined, i.e. either true or false, noted d. Indeed, the laws for d are exactly those 
of ±, and we are simply using standard Scott Logic. However, we prefer to use 
the d symbol since the intuition is different. 

The 3 logic values {0,1, d} are respectively encoded by the pairs of Boolean 
values {1,0}, {0,1} and {0,0}. In expressions, we encode variables we want to 
keep by a pair {x,x), and variables we want to abstract by the constant pair 
d = (0,0). Three-valued functions (TVFs) are encoded using a pair of Boolean 



functions (/°,/^), such that /° (resp. /^) is the characteristic function of the 
set for which / evaluates to 0 (resp. 1). The set /"^ of valuations for which / 
is defined is f^ = f^+f^ and, by construction, /"-/^ is always false. Hence, / 
does not characterize a partition of two sets (/, -■/) as in Boolean logic, but a 
partition of three sets (/°,/\/''), as seen on Figure 3. 

Figure 3: /°, /^ and f^ onsets 

Standard operators over Boolean functions are extended to TVFs with re- 
spect to the following formulas: 

{f,n-{9',9')=^{f+9\fV) 
For instance, f+g is false if both / and g are false, but true as soon as either / 
or g is true. 

The three-valued logic functions are known to be monotonic [8] in the lattice 
{d<0,d< 1}. 

Application to the RSS Computation By abstracting variables, we take the 
previous technique a step further: while state variables replaced by inputs were 
still present in intermediate computation, abstracted variable are completely 
removed from the support of the BDDs. 

To achieve this, we need to return to how the equality in (3) is computed. 
As the equality a = 6 can be written as a-b + a-b, (3) is internally expanded into: 

Img(/, x) = Ar'. f 3r,i. x(r) A J(i) A f /\ r',-h{i,r) + V.-JiJiyj] J       (4) 

Using three-valued logic, we cannot simply replace fk by fl and fk by /°, as 
we do not have fl V /°, unlike fk^ fk, as represented on Figure 3. Instead of 
a partition /, /, we now have three sets, /°, /^ and f^ = f° + f^, the latter 
being the set of arguments for which we only know that / is defined. Therefore, 
we must widen the positive function / by /°, and the negative function / by /^. 



We introduce the Olmg operator as the widening of the standard Img operator, 
defined as: 

OImg(/, x) = Ar'. f 3r,z. x{r) A J{i) A ( /\ r',-f°{i, r) + r'^-fl{i, r] (5) 

Informally, we have replaced the characteristic function of the set "on which 
/ is true" (the onset of /), by a superset "on which / is certainly not false", and 
vice versa. However, when applied to concrete variables of the form (x, -'x), the 
onsets of /° and /^ forms a partition of the domain on which / is defined, and 
the result of (5) remains exact. 

Since three-valued functions are monotonic, the Olmg operator is also mono- 
tonic in the complete lattice of sets of states. Hence the algorithm terminates 
with a unique least fixpoint. 

Example Returning to the example circuit of Figure 1, in order to check that 
n A r2 = 0, we can abstract r4, and apply the widened RSS computation algo- 
rithm: from the initial state (ri,r2,r3) = (1,0,0), three iterations reveal the 
states (0,1,0) and then (0,0,1). Having abstracted r4, we could prove that 
T-j A 7-2 = 0 with less functions but also with less intermediate variables. 

Conversely, if we choose to abstract rs, starting from the initial state 
iri,r2,r4) = (1,0,0), three iterations reveal the states (0,1,0) and (1,1,0) and 
then (0,0,0). We cannot prove that ri A 7-2 = 0. 

Discussion As for the previous technique, there are fewer register functions to 
combine and manipulate during the image computation, and even fewer variables 
to substitute. Furthermore, the number of variables that have to be quantified a 
posteriori is reduced: the former formula 3x,y . f{x, y) becomes /(d, 0) -|- f{d, 1) 
when X is abstracted, instead of /(0,0) + /(0,1) + /(1,0) + /(1,1). One can 
argue that the number of register function to build is increased, but this step of 
the RSS computation is far from being critical. 

On one hand, abstraction reduces the number of BDD variables and functions 
to compute, by early quantification. Of course, if the abstracted variables were 
really irrelevant, they would have also disappeared from the BDDs, but during 
its construction; our technique removes them before. 

On the other hand, we have seen that the equality must be widened, which 
leads to an over-approximated result. Furthermore, the information we loose in 
the abstraction process is the_correlation between positive and negative instances 
of a variable. For instance, dd is abstracted to d instead of 0. Returning to Figure 
2, choosing to abstract the test variable would lead to loose the knowledge that 
both true and false branches are exclusive. 

So far, the selection of state variables to be abstracted still depends on proper 
human designer guidance. 



3.3    Refinement Using the Esterel Selection Tree 

Esterel [4,5] is a, control-dominated language: the control part has a hierarchi- 
cal structure, reflecting nesting of statements in the original programs, while 
communication between different parts of the program is handled through in- 
stantaneously propagating signals or shared variables. Roughly, every construct 
in the program has an associated selection wire indicating whether this con- 
struct is active or not. The value that these selection wires carry comes from 
combinations of registers, i.e. the current state of the machine. Selection registers 
are then combined with tests to activate other areas of the program and finally 
propagated to the registers to determine the next FSM state. 

As generated from high-level language, Esterel circuits feature some interest- 
ing information concerning their design, notably the hierarchy of pauses, i.e. reg- 
isters generated by explicit or implicit pause statements. For instance, consider 
Program 1, where declarations are omitted. Square brackets group statements, 
semi-colons indicate sequence, and || indicates parallelism. The await instruc- 
tion contains an implicit pause: once the first instant an await statement was 
activated is over, the next statement is executed as soon as the awaited signal 
appears. Therefore, each await statement will generate a register in the circuit. 
Because await statements at Hnes 2 and 4 are executed in sequence, their reg- 
ister are exclusive; similarly, because block 1-9 is executed in sequence with the 
await statement at line 10, the register coming from line 10 is exclusive with 
all registers coming from block 1-9. On the other hand, blocks 2-5 and 7-8 are 
compatible, so no relation can be infered. 

In Esterel circuits, such an information is stored in the Selection Tree [25], 
where non-terminal nodes indicate either compatibility or exclusivity and termi- 
nal nodes are registers. The Selection Tree of Program 1 is represented on the 
right-hand side, where exclusive nodes are noted with sharps. From this Selection 
Tree, we can build a BDD that alone gives an over-approximation of the RSS of 
the circuit, for all the states it denies cannot be reached by construction. With 
adequate variable ordering, the construction of such a BDD is straightforward. 
In the sequel, we will see that this BDD can be used both as an upper bound 
for over-approximation, and to maintain some constraints on loosen variables. 

Use of the Esterel Selection Tree When replacing state variables by inputs, 
the Esterel selection tree can be used in two ways. 

First, we can enhance the input care set with constraints involving at least 
one state variable that has been replaced by an input, as the input care set can 
actually reference both inputs and combinational inputs, i.e. real state variables. 

Second, we can build, from the relations involving state variables, an up- 
per bound for over-approximation, or over-approximation ceiling. Erroneously 
discovered states that cannot be reached by construction are removed by inter- 
secting the set of new states with the over-approximation ceiling, at the end of 
each step of the RSS computation process. 

When abstracting variables, we cannot refine the input care set with relations 
from the Esterel selection tree, as there is no variable any more. However, we 



1 [ 
2 await 11; 
3 do something; 
4 await 12; 
5 do something 
6 II 
7 await 13; 
8 do something 
9 ]; 
10 await 14; 
11 do something 

pause 1   # 
#--■ 

pause 2 - - - # 

pause 

pause . 

-# 
# 

# 
# 

Program 1: Esterel Example Program 

are still able to reference the subset of state variables that are not abstracted, 
and build an over-approximation ceiling BDD. 

4    Experiments 

We have implemented the presented technique on top of the TiGeR [13] BDD 
package. Our tool was run on a 750MHz Pentium III machine with 1GB of 
memory. 

We present data on an industrial Esterel circuit: the fuel-management system 
of a twin-engine jet aircraft from Dassault Aviation, described in [21]. This 
system consists in several modules: 2 engines, 2 feeder tanks and several internal 
and external tanks. The main function of this system is to ensure that the engines 
are properly fed, while managing system the component failure, the fuel load 
balancing between the two sides of the aircraft, the in-flight refueling, etc. Most 
of these tasks are handled by the two feeder tanks, and several safety properties 
were written for these modules. The complete design has 9,154 nets and 509 
registers. Computing the exact RSS of the complete design is intractable on a 
1GB machine. However, when focusing on only one safety property at a time, 
this become largely feasible after a simple pass of transitive network sweeping, 
which may remove more than 300 registers. 

Tables 1 and 2 shows comparisons of the aforementioned approaches to the 
RSS computation, for two properties of the design that feature regular behavior 
of our tool (other properties only show behaviours similar to either one of the 
featured properties). The first line shows the results for exact computation, the 
second when some state variables are replaced by inputs, the third when some 
state variables are abstracted, and the fourth when some state variables are ab- 
stracted and the Esterel selection tree is used as an over-approximation ceiling. 
Time and memory columns do not take into account the file parsing and net- 
work construction times and memory usages, as they do not depend on the RSS 
computation approach, and, on such examples, may become the most expensive 



part of the process (although their complexity is linear and usually negligible). 
The jlL column indicates the number of remaining registers after the transitive 
network sweeping pass. 

Following the advices of the designers, we chose to abstract or replace by 
inputs the state variables of all of the internal and external tanks but the feeder 
ones. Note that the hierarchical nature of Syncharts designs allows our tool to 
work with simple abstraction hints from the designer. 

method time mem. 
(MB) 

#L total reachable states at step n    \ 
1 2 3 4 5     1 

exact >10mn 79 178 8,749 3.01e8 1.33el3 3.33el3|3.67el3 
repl. by inputs 3.8s 6 59 37 341 3,738 
abstracting 1.7s 7 59 37 2.71e5 9.48e6 9.51e6 
abs. + seltree 1.5s 6 59 37 1,670 6,807 7,407 

Table 1: Verification of Property 4 

method time mem. 
(MB) 

#L total reachable states at step n\ 
1 2 3 4 5|6|   7 

exact >2mn 21 120 2 1.66e4 2.41e8 7.03e8 8.85e8 
repl. by inputs 0.6s 5 37 2 70 229 245 
abstracting 0.3s 5 37 2 4.33e3 1.07e6 2.42e6 
abs. + seltree 0.3s 5 37 2 865 7.92e4 1.77e5 

Table 2: Verification of Property 6 

By removing state variables, we reduce the number of functions to build and 
compute the image of. We also reduce the number of existential quantifications 
to perform. Also, we cut some transitive links between functions, then allowing 
the transitive network sweeping pass to remove more state variables. When the 
removed variables are properly chosen, this results in great speed and memory 
usage improvements: there are several orders of magnitude of differences be- 
tween the exact RSS computation and the least over-approximation technique. 
Furthermore, less iterations may be required to reach the fixpoint. Both tables 
show that abstracting state variables can lead to a greater over-approximation 
than replacement by inputs; for Property 4, this even require a additional it- 
eration step. However, using relations between state variables expressed by the 
Esterel selection tree allows us to reduce significantly the over-approximation. 

In any case, state variables to be removed must be selected with care. If not, 
excessive over-approximation may lead to a snowball effect: unreachable states 
are found reachable, then the image of these states must be computed, which 



may lead to other unreachable states found as reachable, and so on. As variable 
abstraction computes greater over-approximations than replacement by inputs, 
we can naturally expect results to be worse when they are already bad with 

replacement by inputs. 
On another example, time improvements due to variable abstraction range 

from 20X to 70X and memory reduction from 5X to lOX, but the standard 
technique of replacing state variables by inputs achieves better results. We are 
currently improving the ORSS computation algorithm in order to obtain better 

figures. 

5    Conclusions 

This paper presents a technique to improve the computation of the Reach- 
able State Space of sequential circuits, by computing over-approximations of it 
through variable abstraction, using a three-valued logic. This approach takes the 
commonly used technique of replacing state variables by inputs a step further. 
When state variables to be removed are properly chosen, relevant improvements 
of both time and memory usage can be noticed in comparison with replacement 
by inputs. Excessive over-approximation may be confined by using by construc- 
tion RSS over-approximation ceilings, expressed by high-level structural data, 

like the Esterel selection tree. 
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1. Introduction 

Design flows are well established for synchronous designs, and supported with efficient synthesis, 
simulation and verification software, starting from the Register Transfer level. Asynchronous designs 
have long been neglected, due to their higher bit cost, and tuning difficulty. However, with the advent 
of systems on chip involving the interaction between analog and digital parts, and the communication 
of physically distant circuit modules using long interconnections, the global synchrony hypothesis is 
no longer realistic; the design of locally synchronous and globally asynchronous systems on chip 
(SOC's) is a possible answer to the efficient reuse of existing components, using a distributed control 
and asynchronous interfaces. One of the objectives of the on-going research described in this 
contribution is to investigate the verification of mixed synchronous and asynchronous circuits, starting 
from a high-level specification. 

Typically, asynchronous circuits are specified at logic level, using a CCS or a CSP-like formalism 
[Mar90, Ber93]. In our work, we write the initial behavioral description in the CHP language (from 
Caltech). Following the works of A. Martin [MLM97, MLM99], most of the initial effort at TIMA has 
been devoted to identifying the conditions required on the initial description, and correctness 
preserving transformations, in order to synthesize asynchronous circuits. The resulting TAST design 
flow is shown on Figure 1. Process decomposition and refinements lead to an internal Petri Net 
formalization, from which a choice of architectural targets is available: micro-pipeline, quasi delay 
insensitive circuit, or synchronous circuit. A dedicated compiler produces a structural gate network, in 
source VHDL, for simulation and back-end processing using commercial CAD tools. This approach 
has supported, up to silicon fabrication, the design of two asynchronous microprocessors: 
ASPRO[RVR99] and MICA[ABRO 1 ]. 

The recent introduction of formal methods in the design flow has been motivated by an extension of 
the previous compiler to accept a wider range of CHP primitives, and a need for higher correctness 
insurance. Up to now, simulation was the only verification means, and it came late in the design 
process. Trying to model check the synthesis result is difficult because each gate, each flip-flop is a 
process, each wire is a state element; an event is the arrival of a valid value on a wire, and all inter- 
leavings of events may a priori occur. Applying brute force model checking quickly leads to 
combinational explosion. 

As an initial feasibility study, we propose to use existing verification tools, even if they were initially 
not intended for asynchronous designs. More precisely, commercial model checkers used in hardware 
verification, starting from a standard Verilog or VHDL description, usually assume the existence of a 
single synchronization master clock for the circuit. In order to provide an early validation of the initial 
model properties, we extract a state machine from the kernel Petri Net and give a VHDL 
representation for it. In this first prototype, we introduce a fictitious clock that allows us to examine 
the model after each transition firing in a sequential path, and to use existing model checking software. 
In addition, the translation takes advantage of the known restrictions on the Petri Net, being the 
semantic representation of a CHP program. 

In this paper, after discussing the design flow, we describe the main CHP communication and 
synchronization primitives, their Petri Net model, their "pseudo clocked" VHDL translation, and the 



verifications that could be performed on the model, before and after synthesis. We then propose a set 
of transformations to produce a more compact and efficient coding of the state machine. As a running 
example, we use a simple, yet characteristic, selector module, and show examples of safety and 
liveness properties that have been verified using "Formal Check". 

2. The TAST Design Flow 

At TIMA, we are developing TAST, an open design framework devoted to asynchronous circuits. 
TAST is the acronym for "Tima Asynchronous Synthesis Tools". It mainly consists in three parts: a 
compiler, a synthesizer and a simulation-model generator (Figure 1). TAST offers the capability of 
targeting several outputs from a high level CSP-like description language called CHP (Communicating 
Hardware Processes). 
The compiler translates CHP programs into Petri Nets (PNs) associated to Data Flow Graphs (DFGs). 
Such a model has been used for years to describe synchronous circuits and systems. However, it finds 
a particularly adequate application in the field of asynchronous digital circuits and systems design. 
The synthesizer is in charge of generating asynchronous circuits from the Petri Net representation of 
the CHP programs. Asynchronous digital circuit synthesis is based upon DTL (Data Transfer Level) 
specification. It provides a set of rules to guarantee that PN-DFG graphs are synthesizable into 
asynchronous digital circuits. TAST synthesizer is so far able to address two kinds of asynchronous 
circuits: Micropipeline [Sut89] and Quasi Delay Insensitive [Mar90] asynchronous circuits. In the 
following, only delay insensitive asynchronous circuits are considered. 
Behavioral VHDL models of the CHP specification are generated to perform CHP programs 
verification using simulations (simulation niodeLgener_ator)_.  

CHP Code 

CHP Compiler 

Simulation Model Generator 

 i 
Behavioral Asynchronous 

VHDL Model 

VHDL Custom Libraries , 

for Simulation 

Reports   |<  VHDL Simulator 

DTL' Compliance Checker 

Synthesizable Petri Net-DFG 

i      nP' Flavor QDI Flavor 
i     Synthesizer Synthesizer 

VHDL Gate Level Netlist 

Custom Cell Libraries 

:  Std Cell Libraries 

Back-end Tools 

Figure 1: The TAST design flow. 



The introduction of a formal verification flow in TAST starts from the Petri Net - DFG format. 
(Figure 2). A first step consists in choosing an appropriate communication protocol, as well as 
expanding all communication primitives according to this protocol. A state encoding is associated to 
the resulting Petri Net, based on its global place marking. From this state encoding, a Finite State 
Machine interpretation of the Petri Net is constructed and implemented as a VHDL behavioral model. 
The model obtained can be directly fed to an industrial model-checking tool, accepting a standard 
HDL entry. The formal verification task consists in modeling the environment of the description we 
wish to verify, and writing a set of temporal properties that need to be satisfied. 
On the other hand, the asynchronous synthesis tool produces a VHDL gate level netlist, which can also 
be fed to a model-checker. Thus, the compliance of the synthesized model with respect to its 
specification can be checked, by trying to prove the same set of temporal properties on the 
specification and the synthesis result. 

Figure 2: formal verification flow of CHP programs and QDI asynchronous circuits. 

3. From CHP programs to Petri Nets 

There is no agreement today on a specification language that provides all the facilities to model and 
synthesize asynchronous circuits. However, CSP-like languages are widely used. Caltech University 
have proposed CHP (Communicating Hardware Processes) [Mar90][Mar93], Philips has defined 
Tangram [BKR91][VB93], the university of Utah has developed a tool based on Occam [BS89], and 
Manchester has defined BALSA [BE97]. All these languages are using the basic concept of CSP : 
concurrent processes communicating with channels [Hoa78]. 
We have developed a proprietary high level description language derived from CHP with specific 
features to cope with communication protocols, data encoding, arbitrary precision arithmetic, non- 
deterministic data flow, hierarchy, project management and, traceability. All these features make our 
modified CHP a very practical system description language to develop with. 

3.1. CHP syntax basics 

In this section, the CHP language is briefly introduced to provide the minimum necessary to enable the 
reader to read and understand the programs used through out the paper. 

Literals 
Integers constants are noted in fixed precision with the following syntax: 
"<digit>.<digit>..." [base][length] which specifies a vector of "length" element represented in base 
"base". 
Each digit belongs to [0, base-1], and base and length are non-zero natural numbers. 
Example : "1.9.7.9"[10] is obviously number 1979. 

"1.2.3"[4] = 1*4^ + 2*4' + 3*4° = 27. 



In order to avoid this notation for usual bases such as 10 and 2, standard notations are also supported 
for integers and binary numbers. 

Unsigned data types 

MR[B] : Multi-Rail in base B 
This type represents a number between 0 and (B - 1), coded with the "1-of-n" delay insensitive code. 

Example : 
VARIABLE b: MR [B]; -- declaration 

b := "x" [B]; - assignment, with 0 <= x < B 

MR[B] [L] : Vector ofL Multi-Rails in base B 
This type corresponds to a vector of L elements of type MR [B]. It represents a number between 0 and 
(B'^L-l). 
Example : 

VARIABLE b : MR [B] [3]; -- declaration 
b := "0.0.0" [B]; -- assignment 

Based on these basic unsigned types, other types are defined to make designers' life easier. They are: 

DR : Dual Rail - equivalent to MR[2] 
DR [L] : Vector ofL Dual Rail elements - equivalent to MR[2] [L] 
BIT : Binary - equivalent to MR[2] 
BIT[L] : Vector of Bits - equivalent to MR[2][L] 
BOOLEAN ; equivalent to MR[2] 
NATURAL[Max] :      MR[2][L] type ranging from 0 to Max value. 

L is the superior integer part of (Log2 [Max+1]). Max is a natural value, which must be 
specified during the declaration of the element of type NATURAL. 

S R : Single Rail - equivalent to MR [1 ]. 
This type does not carry any value, it allows the specification of synchronizations between 
communicating processes. The SR type only applies to Channel or Port declaration. It is not 
relevant for variables. 

Signed data types 
All the types previously presented, except SR, have a signed equivalent. The complement to the 

base B is used to encode negative numbers. Thus, the same representation as unsigned types is used, 
but the highest order digit is interpreted as the sign. 
SMR[B] : Signed Multi Rail in base B 
This type represents a number between -(B / 2) and (B / 2) - 1, if B is even or between -(B - 1) /2 and 
(B - 1) / 2, if B is odd. The representation of a negative value is obtained with the complement to the 
base B. For instance in base 16, -2 is represented by 14 (16 + (-2) = 14). 
EXCXIYIDIG • 

VARIABLE b : SMR [4];      -- declaration 
b := "2" [4];       -- assignment: b = 2 - 4 = -2 

SMR[B][L] : Signed Vector ofL Multi Rail in base B 
This type corresponds to a signed vector of L elements of type MR [B]. To evaluate the nuinber, 

only the highest order digit is signed, the other digits keep their positive values. For instance "1.5"[16] 
= 1*16 + 5 = 21 while "15.5"[16] = (15 - 16)*16 + 5 = -11. 
Example : 

VARIABLE b : SMR [3] [3]; -- declaration 
b := "2.2.2" [3]   -- b = (-1 )*3^ + 2*3 + 2 = -1 

From these basic signed types, other types are defined as abbreviations: 
SDR : Signed Dual Rail -equivalent to SMR [2]. 
SDR[L] : Sigfied Vector ofL Dual Rail values, equivalent to SMR [2][L]. 
INTEGER[Max] : SMR [2][L] type ranging from -(Max+1) to Max. 



Operators 
The following operators are available in our CHP language : 
Comparison 
Arithmetic : 
Logical: 
Communication actions : 
Assignment/conversion: 
Sequential/parallel: 

Control structures 

=, /=, <, <=, >, >= 
+, -, *, mod, sll, sla, srl, sra, rol, ror 
not, nand, and, nor, or, xnor, xor 
! (send), ? (receive), # (probe) 

; (sequential) and "," (parallel) 

Deterministic selection. It waits for a unique true guard. Once one of 
the guards is evaluated to true, it executes the associated bloc and 
terminates the selection. 

Non-deterministic selection. It waits for one or more true guards. 
One of the true guards is selected, and the associated bloc executed. 
The selection then terminates. 

Deterministic loop. While a unique guard is true, it executes the 
corresponding bloc. It terminates when none of the guard is true. 

[ guardi => blod 
@ guard2 => bloc2 
@   ... 
] 
[ guardi => blod 
@@ guard2 => bloc2 
@@ ... 
] 
*[ guardi => blod 
@ guard2 => bloc2 
@      ... 

Non-deterministic loop. While one or more guards are true, one of 
the true guards is selected and the corresponding bloc executed. It 
terminates when none of the guard is true. 

Program structure 

A CHP COMPONENT is made of its communication interface, 
followed by a declaration part and its body. The communication 
interface is a directed port list, similar to VHDL. The declaration 
part declares local objects like channels and constants. The body is 
made of concurrent processes or component instances. They can all 
communicate with each other, and also with the component ports. 
Point to point communication only is allowed. 

A process is made of a port list, a declaration part and a body. It is 
important to mention that a process is a loop. When the last 
instruction completes, the process restarts the first instruction. 

@@ 
@@ 
] 

guardi => blod 
guard2 => bloc2 

COMPONENT 
component_name 
PORT (portjist) 
{declaration part} 

Begin 
component body 

End component_name; 

PROCESS process-name 
PORT (portjist) 

{declaration part} 
[ 
instruction list 

Example 

As an example, consider the program of Figure 3 which specifies a selector. Because there is only one 
process, the component port Hst and the process port list are identical. Channel C is read in the local 
variable "ctrl" which is tested using a deterministic choice structure. If "ctrl" is '0' then the value read 
from channel "E" is propagated to channel "SI". If "ctrl" is T then the value read from channel "E" 
is propagated to channel "S2". Finally, if "ctrl" is "3" then the value read from channel "E" is 
propagated to both channels "SI" and "S2" in parallel. 



COMPONENT Selector 
PORT(E:inDR; C: in MR[3][1]; 

S1,S2:outDR) 
Begin 
PROCESS main 

P0RT(C:inMR[3][1]; E: in DR; 
S1,S2:outDR) 

Variable x: DR; 
Variable Ctrl :IVIR[3][1]; 

*[ C ? Ctrl; [  Ctrl = "0"[3] => E ? x; S1 I x 
@ ctrl = "1"[3]=>E?x;S2lx 
@ Ctrl = "2"[3] => E ? x; S1 ! x, S2 ! x 

] 
] 
End Selector; 

Figure 3 : CHP code of a Selector 

3.2. Petri Net generation 

In order to translate CHP programs into Petri Nets we are considering the Petri Net representations of 
all the language structures plus those of the sequential and parallel operators. Other instructions and 
expressions are represented using Data Flow Graphs which are associated to places and transitions. 
Instructions are associated to places whereas guards are associated to transitions. 

Selection operator: [Gi => Cijwith i € {l..n} 
The corresponding Petri Net is described in Figure 4. This Petri Net models both types of selection, 
the deterministic and the non-deterministic one. 

not(Gl) 
and not(G2) 
andnot(Gi).. 

Figure 4  :  Petri Net 
for the selections 

Figure 5 : Petri Net for the repetitions 

Repetition operator: "'[Gi => Ci] with i e {l..nj 
The corresponding Petri Net is described in Figure 5. Here again, the Petri Net models both the 
deterministic and the non-deterministic repetition. 

Sequential operator: Cl ; C2 
Statement C2 is executed after the completion of instruction Cl. The Petri Net of Figure 6 is 
modelling this operator. 



Parallel operator: Cl, C2 
Statements Cl and C2 are ex ecuted concurrently. The Petri Net of Figure 7 is modelling this operator. 

Figure    6    :    Petri    Net    for    the 
sequential operator Figure 7 :  Petri Net for the parallel 

operator 
Example 
Figure 8 gives the Petri Net obtained from the translation of the CHP program of the Selector (Figure 
3). Place PO is the first place of the repetition. This repetition has a unique implicit guarded command 
which is [True => C ? Ctrl...]. Hence, when the command execution completes, the execution has to 
restart from place PO. Moreover, place Pi is the initial place to start from at the beginning of the 
execution. Therefore, Pi has to be initially marked. 
The first statement to execute is "C ? Ctrl". This instruction is represented by a DFG and is associated 
to place PI. It is followed by a sequential operator, modelled with transition Tl. Then the next 
instruction is a selection starting from place P9. Within the third guarded command note that the 
parallel operator is represented by places P3, P4 and transitions T3 and T5 

Figure 8 : Petri Net of the Selector. 



4. From Petri Nets to gates 

First of all, it is worthwhile to mention that deriving Petri Nets from DTL compliant CHP programs 
ensures that there exists a quasi delay insensitive gate implementation of the Petri Nets. Then, in order 
to derive a gate implementation from the Petri Net, channel and variable encoding as well as 
communication protocols have to be precisely defined. 

4.1. Data encoding 

As discussed in section 3.1, all data are declared and built using the basic MR[B] type. For quasi delay 
insensitive hardware, type MR[B] must adopt delay insensitive code and implementation. Hence, a 
digit of type MR[B] is physically implemented with B rails (MR stands for Multi Rail), each wire or 
rail carrying out one of the B possible values that the digit can take (between 0 and B-1). It is clear that 
this coding is a one hot coding since at most one bit is one. 
Channels are using the same encoding convention. In addition, an acknowledge signal is added to 
support handshaking communication protocols. As an example the hardware representation of variable 
"Ctrl" and channel E of the CHP program of Figure 3 are depicted in Figure 9. 

MR[3] type variable DR type channel 

railQ »► 
raijl 
rail2 

railO 

raill 
4    ack 

Figure 9 : hardware implementation of variable Ctrl: MR[3] and channel E : DR. 

4.2. Communication protocols 
The 4-phase handshaking protocol is chosen for implementing inter-process communications. Figure 
10 illustrates a data transfer along channel E as it is declared in the CHP program of figure 3. 

Figure 10 : 4-phase handshaking protocol: transfer of value zero on channel E 

Initially, railO and raill are both zero and the acknowledge signal "ack" is one. In the first phase, the 
event on "railO" indicates that a zero is ready in channel "E". In response to this transfer request, phase 
2 acknowledges the data by falling down signal "ack". Phase 3 and 4 are necessary to return the 
signals back to their initial values. A read action from channel "E" using this communication protocol 
can be formally described using Petri Nets as shown in Figure 11. This representation is commonly 
called a "handshaking expansion" [Mar90]. 



Tl 

T2 

E_railO=l or E_raill=l 

X-railO := E_railO 
X_raill := E_raill 
E_ack <= '0' 

E_railO=0 and E_raill=0 

X-railO := E_raiIO 
X_raill := E.raill 
E ack <= •!• 

Figure 11 : Petri Net description of a read action on channel "E". 
E ? X : with E and x of type DR (Figure 3). 

4.3. Synthesis 

Generating a gate net-list from the Petri Nets is a difficult problem that is beyond the scope of this 
paper. The first step of the synthesis process consists in expanding all the communication actions 
associated to the places of the Petri Net. This is done according to the chosen protocol as illustrated in 
Figure 11 for a read action. Similar expansions are defined for write actions. Then, all the instructions 
and guards associated to places and transitions, and represented by DFG constructs, are translated into 
gates. Finally, the gate net-list is generated from the expanded Petri Net and the synthesized DFG's. 
The circuit obtained for the Selector is described in Figure 12. Gates denoted "C" are Muller C 
elements. Gates denoted "Cr" are Muller C elements with reset. 

C_ack     C_2, C_l, C_0 

Figure 12 : Gate circuit of the Selector. 



5. Verification 

Verifying the correctness of the delay-insensitive circuits involves two steps: validation of the initial 
specification and checking the correctness of the synthesized circuit. 
In the first step we validate the initial specification of tiie asynchronous circuit, by constructing a 
finite-state machine description in the VHDL language. This FSM corresponds to the Petri net 
representation. After modeling the circuit environment, the resulting VHDL is checked by applying 
model-checking tools. 
The second step verifies the preservation of the logical properties of the asynchronous circuit after 
synthesis, with regard to the properties checked on the initial specification. 

5.1 Petri nets as finite-states machines 

The CHP specification is translated into a safe Petri net. We formalize such a Petri net as a quadruple 
I=<S, T, F, Mo>, where 

(i)     S and T are finite, disjoint, nonempty sets of places and transitions, 
(ii)   F c (SxT) u (TxS) is a flow relation, 
(iii)  Mo : S -> Bool is the initial marking. 

The data-flow graph part of the CHP translation is associated to the Petri net places; in particular, 
communication actions are linked to places. The internal control flow and the synchronization of the 
communications are modeled by the guards associated with the Petri net transitions. Each place is 
represented as a Boolean state-holding object and each marking as a min-term on these objects. This 
allows a direct translation of the Petri net as a finite-state machine, where the marking represents the 
global state of the system. Firing the enabled transition t at a marking M produces a new marking M' 
constructed by setting all input places of t to 0 and all output places to 1. Actions are attached to places 
and conditions are attached to transitions. Places with communication actions have to be expanded, 
according to the selected protocol. 

5.2 Translation of the Petri net to a verifiable model 

In order to benefit from existing industrial tools, and fit in the design flow, we built a prototype which 
translates the Petri net representation into a register transfer level, behavioral VHDL model suited for 
formal verification (i.e. compliant to the 1076.6 standard). The simulation-oriented behavioral VHDL 
model generated in the TAST flow (Figure 1) contains timing and attribute directives which are 
essential to follow the propagation of the signals, but make this model improper as an input to model 
checking tools. Ignoring or removing all delays alters the behavior of the model. The trick consists in 
replacing each unit delay by a tick of a fictitious clock, thus making visible the "delta" delay of a 
purely behavioral, non-timed, state transition model. 

The translation of the CHP COMPONENT interface is straightforward. All the internally declared 
variables and Petri net places are made VHDL signals, which guarantees that all state transitions take 
at least one step. The overall Petri net for a component is translated as a single process synchronized 
by the fictitious clock, and not as a set of guarded blocks as in [AB098]. The full process is executed, 
and all active transitions are fired, at each step. 

a) Algorithm 

Input: Petri Net 

Translation of declaration part 
Declare the variable according to its type and (or) its parameters (Base and Digit). 

Browse the global Petri net (Places and transitions) 
IF (place Pi) Then 
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Associate a signal Pi to the place; 
IF (Place is atomic) 

Add : if Pi tiien action(Pi),... end if; 
— action(Pi): Actions associated to the place Pi. 

else - The place expresses a communication. 
Put_Com 0; 

ELSIF (transition Ti) Then 
Add: 

If (And[cond(Ti), placesJn(Ti) ]) 
— cond(Ti) Condition associated to the transition Ti. 
places_in(Ti) = false ; -- places_in(Ti) .-Input places. 
places_OUt(Ti) = true ; - places_out(Ti) .-Output places 

end if; 
End IF 
End of browsing. 

Output: VHDL program. 

Put com 0 
Implements the communication actions, Read? or Write!, by insertion of the corresponding Petri Net 
in global Petri Net. 

b) Translation of communications 

The communication actions are implemented with the handshake protocol. 

Translation of Read : (C ?ctrl) 

CHP declaration: 
C : IN MR[3][1]; 
variable Ctrl: MR[3][1]; 

Translation into VHDL: 
C : IN bit_vector(2 downto 0); 
C_ack : OUT bit; -- Acknowledgement 
signal Ctrl: bit_vector(2 downto 0); 

Translation of: Write (Six) 

CHP declaration: 
S1,S2:0UTDR 
variable x: DR; 

Translation into VHDL : 
S : OUT bit_vector(1 downto 0); 
S_ack: IN bit; -- Acknowledgement 
signal x : bit_vector(1 downto 0); 

© C ? Ctrl 

0 Six 

((C="001" OrC="0]0"; 
or rzi'MOO'"* 

Ctrl <= C ; 
C_ack <= '0'; 
C= "000" 

C_ack <= '1'; 

(T) S <= X ; 

 S_ack = '0' 

(G^ S <= "00"; 

-S_ack = 'r 

c) Application to the selector example 

The automatic translation of the selector of Figure 3 reads as follows, where some many similar 
statements and line-feed characters have been manually deleted for space reasons. Comments are also 
manually added. 

11 



entity EX11_Ent is 
poi1( C : in bit_vector(2 downto 0); 

E : in bit_vector(1 downto 0); 
S1 : out bit_vector(1 downto 0); S2 : out bit_vector(1 downto 0); 
C_a:outbit;   E_a:outbit; 
S1_a : in bit;   S2_a : in bit; 
elk, rst: in bit); 

endEX11_Ent; 

architecture EX11_a of EX11_Ent is 
signal EX11_MAIN_X : bit_vector(1 downto 0); 
signal EX11_MAIN_CTRL : bit_vector(2 downto 0); 
signal Pi, PO, P9, P7, P8, PI, P5, P6, P2, P3, P4, POJ, P0_2, P7_1, P7_2, 

P8_1, P8_2, P5_1, P5_2, P6_1, P6_2, P2_1, P2_2, P3_1, P3_2, P4_1, P4_2: boolean; 
begin 
process(clk, rst) 
begin 
if (rst='0') then -- initialization at reset 

S1 <="00"; S2 <="00"; C_a <= '1'; E_a <= '1'; Pi <= true; 
elsif clk'event and clk='1' then -- fictitious clock edge 
if PS then S1 <= EX11_MAIN_X; end if; -- start of write action at place P8 

-- same for P6, P3, P4 
if P7_1 then EX11_MAIN_X <= E; E_a <= '0'; end if; -- start of read action at place P7 
if P7_2 then E_a <= '1'; end if; -- acknowledge hand-shake at expansion of P7 
if ( P7_2) then P8 <= true; P7_2 <= false; end if; -- Transition T13 
if P8_1 then SI <="00"; end if; ^ .^        ^^ ^      ^   _^ 
if ((EX11_MAIN_CTRL = "001") and P9) then P7 <= true; P9 <= false; end if;     --OR branch at P9 
if ((EX11_MAIN_CTRL = "010") and P9) then P5 <= true; P9 <= false; end if; 
if ({EX11_MAIN_CTRL = "100") and P9) then P2 <= true; P9 <= false; end if; 
if ((E="00") and P7J) then P7_2 <= true; P7_1 <= false; end if; 
if ((S1_a='0') and P8) then P8_1 <= true; P8 <= false; end if; 
if ((S1_a='1') and P8_1) then P8_2 <= true; P8_1 <= false; end if; 
... ~ same for all other places and transitions 
end if; 
end process; 
endEX11_a; _^ -  

5.3 Verifying the asynchronous synthesis 

Along the various synthesis steps, an erroneous procedure can produce an incorrect circuit description. 
Therefore, it is useful to perform verification after obtaining a synthesized circuit. 
The circuit obtained after synthesis cannot be proven equivalent to its specification, because the 
synthesis process introduces optimization techniques and pipelines; thus the order of actions is not 
necessarily preserved. As a matter of fact, while the VHDL model for the specification is a single 
process per CHP process, the synthesized circuit is composed of many concurrent processes. The 
formal verification can only hope to prove that the essential safety properties that hold for the initial 
specification are preserved after synthesis. 

The same problem that was raised for the specification validation is again encountered: the VHDL 
simulation model of the synthesized circuits does not conform to the standard verifiable VHDL subset. 
The asynchronous synthesis tool is based on a Ubrary that has to be adapted: 

-     Muller-C elements contain delays and transparent latches; we changed them into flip-flops, 
introducing a fictitious clock, as in section 5.2 
All types are transformed into Boolean and Bit. 

Figure 13 below gives the transformation of one library component. 
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entity MULLER2_R is 
port (resetb : in STD_ULOGIC; 

S: out STD_ULOGIC; 
A, B : in STD_ULOGiC); 

end IV1ULLER2_R; 

arciiltecture behaviour of MULLER2_R is 
signal s_s: STD_ULOGIC; 

begin 

S<= s_s; 

, s_s <= '0' after 1 ns when resetb = '0' else 
j '1' after 1 ns when a='1' and B='1' else 
I '0' after 1 ns when a='0' and b='0' else 

s_s; 

end behaviour 

entity MULLER2_R is 
port (resetb, oik : in bit; 

S      : out bit; 
A, B    : in bit); 

end MULLER2_R; 

architecture behaviour of MULLER2_R is 
signal s_s : bit; 
begin 

S<= s_s; 
process 
begin 

wait until elk ='1'; 
if resetb = '0' then s_s <= '0'; 
elsif a='1' and B='1' then s_s <= '1'; 
elsif a='0' and b='0' then s_s <= '0'; 
end if; 

end process; 
end behaviour; 

Figure 13: VHDL models of a Muller-C gate for simulation and for formal verification 

5.4 Environment modeling 
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Figure 14: Modeling correctness assumptions on the environment 

In order to obtain a correct behavior, a set of environment assumptions must be associated to each 
communication channel. For a given conununication channel, we must ensure that each input wire 
behavior is comphant to the protocol implemented by the channel. All communication channels 
behave according to a four-phase communication protocol. Following the direction of the request 
signal attached to a channel, we distinguish between master channels (the system sends the request) 
and slave channels (the system receives the request). Thus, a dual behavior must be defined for each 
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communication channel. For master channels, the dual behavior must receive the request and send a 
validate within a finite amount of time. Then, it waits until the request falls and deactivates the 
validate within a finite amount of time. The dual behavior of a slave channel must initiate a 
transaction, by non-deterministically rising the request signal. The remaining behavior is obtained 
from the master dual behavior, by exchanging the roles of the request and validate signals. 
A dual behavior can be modeled as a non-deterministic description, which is plugged to each channel. 
A fairness condition must be associated to each dual instance, in order to express the fact that it always 
reacts within a finite delay. 
It is also possible to express a dual behavior as a set of assumptions written in temporal logic. 
Figure   14  displays  the composition  of a system with the dual  behaviors  attached  to each 
communication channel. Wire nd is a pseudo-input signals used to model non-determinism. 

5.5 Application to the selector example 

In the case of the selector example, the environment has been described by a set of temporal formulas, 
and the verification was performed using Formal Check. 

Input channel constraint: 
C_Envl 

After       PI = True 
Eventually (C = x "1" or C = x "2" or C = x "4") and PI = True 

Meanins: Each time place PI is active, an incoming control request will eventually occur. 

C_Env2 
After        C_ack = 0 
Eventually C = x "0" 

Meanins: Each time the request is acknowledged (C_ack = 0), it will eventually return to zero (C = x 
"0"). 

Stable_C 
After     C = X "1" or C = X "2" or C = x "4" 
Always C = stable 
Unless   C_ack = 0 

Meanins: A request is stable until it is acknowledged 

Output Channel Constraints 
Sl_Envl 

After Sl(l)=lor S1(0)=1 
Eventually     S l_ack = 0 

Meanins: After a request on S (Sl(l) = 1 or S1(0) = 1), an acknowledgement will eventually be 
received (Sl_ack = 0). 

Sl_Env2 
After Sl=x"0" 
Eventually     Sl_ack=l 

Meanins: After the write transaction on channel S is finished (S = x "0"), the acknowledgement will 
eventually be deactivated (S_ack =1). 

The ports (E and S2) constraints are similar to the previous constraints (C and SI). 

Some verified properties 
The expressed properties correspond generally to the Petri net branches, i.e. the reachabihty of certain 
places or Transitions by following a given path. Or they are used to express input-output relationships, 
as in our example. The characteristic behavior of the selector is described by the three properties Al to 
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A3 below. These same properties are verified on the circuit specification and on the synthesized 
circuit. 
Meaning of property Al: If place POl is active and an incoming request C = x"l" arrives, then a write 
will eventually occur on SI. 

Al) After POl = True and C = x "1" 
Eventually : Sl(l) = 1 or S1(0) = 1 

A2) After POl = True and C = x "2" 
Eventually : S2(l) = 1 or S2(0) = 1 

A3) After : POl = True and C = x "4" 
Eventually : (Sl(l) = 1 or S1(0) = 1) and 

(S2(l) = 1 or S2(0) = 1) 

5.6 Handling combinational explosion 

Our asynchronous verification approach applies the symbolic model checking technique to a Finite 
State Machine interpretation of a CHP program. Obviously, the verification of large descriptions will 
eventually face combinational explosion. Two main directions need to be explored in order to handle 
this problem. On the one hand, it is important to ensure that the FSM underlying model associated to a 
CHP program does not contain irrelevant states. Currently, a FSM state is associated to each possible 
Petri Net place marking. We are aware that diis representation is quite expensive, due to the state 
encoding which associates one state variable to each place. On the other hand, a verification strategy is 
required, which exploits the characteristics (symmetry, control and data path, etc.) of particular classes 
of designs, such as the asynchronous arbiters. 

Refining the state machine model 
A first improvement to our method consists in associating 
to the initial PN a FSM model with a more compact state 
encoding. For instance, states should be represented as 
values over an enumerated data type. Moreover, the FSM 
states and transitions should match the PN places and 
transitions. This correspondence is not always 
straightforward. "Split - join" (SJ) parallel execution 
constructions need special processing: generate one 
separate PN for each parallel branch, as well as the re- 
synchronization "glue" which marks the end of the 
parallel execution. Figure 15 illustrates this 
transformation. The parallel branches are executed as 
soon as place a is active and transition Tl is true. Each 
parallel branch makes a signal assignment (S1//S3) and 
waits for an external event to occur (Reql = 1//Req2 = 1) 
before making a second assignment (S2//S4). 
By successive application of this transformation, we 
obtain a collection of concurrent PN's which are free of 
parallel execution statements. Since only one place at a time 
may hold value 1 in each concurrent PN, one unsigned signal 
per concurrent PN can hold the number of the active place. 

However, further simplifications are still possible on the resulting representation. Petri Nets allow the 
simultaneous use of two modeling levels in a natural way: sequences of local computations can be 
mixed with operations that imply waiting for an external event. Moreover, infinite execution paths that 
do not contain a wait for an external event are prohibited. Thus, the acmal evolution of a PN is only 

X.T1 and a 

^jS3 <= exp3 

-|-Req2 = l 

jS4 <= exp4 

J_sp 

Figure    15 "split join 
construct transformation 
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S <= exp S <= exp2 

triggered by external events. Any sequence of local computations performed between two external 
events can be considered as part of the same place, which only records their result. Hence, it is useful 
to collapse all sequences of places, which only implement local computations. Such sequences are 
characterized as follows: simple actions like assignments are associated to places; conditions are 
associated to transitions; one transition may fire as soon as its incoming place is active and its 
associated condition true. Figures 16a, b and c present a few Petri Net transformation patterns, which 
perform simplifications according to this criterion. We note them Sa, Sb and Sc. When a transition is a 
part of a conditional statement, if at least one conditional branch is always true (for instance, they test 
condition C and not C), one transition occurs inmiediately (Figure 16a). Parallel and sequential 
assignments may also be regrouped inside the same place (Figures 16b and c). 
The global simplification procedure consists in 
applying rules Sa and Sc on each appropriate PN 
construction. 
Before applying transformations SJ (Figure 15) or 
Sb on a parallel construct, a preliminary analysis 
must determine whether its parallel branches 
implement any waiting on external events. This 
analysis performs a recursive coloring of each 
parallel PN construct: 

each transition is colored if it waits for an 
external event; 

- each parallel structure is colored if its 
branches contain colored transitions or 
colored parallel structures. 

Transformation SJ must be recursively applied on 
all colored constructs. Uncolored constructs are 
treated by transformation Sb. 
The FSM model obtained consists of several 
concurrent state machines that can be represented 
following a usual coding style. This 
simplification technique brings two major 
improvements: 

- The resulting FSM state encoding relies on state 
enumeration.      Our     initial     implementation 
associates one state variable to each PN place. For a net containing N places, N state variables 
are needed. Concurrent FSMs state encoding would only need logzN state variables; 

- Irrelevant PN places and transitions (if any) can be suppressed. 

SI <=cxpl cxpl 

SI <=expl 

SI <=expl 
' S2 <= exp2 

Figure 16 - PN transformation patterns 

Formal verification strategy 
The example of Figure 8 implements the selection between incoming channels. Once a channel is 
selected its data is read and sent through an output channel. This sequence is repeated each time a new 
command is received. We call it a transaction. Note that a transaction cannot influence the execution 
of a subsequent transaction. Hence, we may simply focus on writing correctness criteria for a single 
transaction. According to the value of the control word Ctrl, the arbiter follows a separate execution 
path. We distinguish 3 independent execution scenarios (corresponding to Ctrl = 0, 1, 2). Hence, each 
property can be split into three proof sub-goals, one for each execution scenario, following two steps: 

- abstracting away the logic driving the variable Ctrl, so that it becomes an artificial primary 
input; 

- writing a property for each execution scenario, by constraining Ctrl to the corresponding 
constant value. 

If all sub-goals of a property pass, then we may consider that the initial property is true. 
This strategy seems adequate for this particular class of designs. It allows important simplifications in 
the model representation, as each sub-goal constrains Ctrl to a constant value, which allows important 
simplifications of the FSM representation. 
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6. Related Works 

The verification of asynchronous circuits may follow two important directions, according to the 
asynchronous design approach: untimed (delay insensitive) [Roi97], or timed design. It is well known 
that the verification of timed systems faces serious complexity problems. 
A particular interest has been shown for the development of asynchronous specification methods. The 
use of concurrent processes for specifying an asynchronous behavior appears to be adequate for most 
specification problems. Based on this approach, two main directions have been explored: language- 
based and graph-based asynchronous specification. 
Synthesis methods for language-based specifications directly translate a program into a circuit. In 
[Mar90], the specification program is translated into a circuit by using a series of semantic preserving 
transformations. Graph-based specifications are used at a conceptual level lower than language based 
methods. This approach is widely used [Roi97, McM92] together with the Petri net or State Transition 
Graphs formalisms. 
Asynchronous verification methods have been developed following these design approaches. Early 
works on the formal validation of asynchronous designs include experiments with CIRCAL to model 
micro-pipe lines, and evaluate correctness and performance properties on them [CMOO]. This approach 
doesn't make use of temporal logic, but models both the system and its properties as processes and 
constructs the parallel composition of the implementation and property processes. The result is 
compared to the initial system modehng by using an equivalence checking procedure. If the proof 
succeeds, the system satisfies the property. This methodology has been used to prove the correctness 
of two four-phase asynchronous micro-pipelines. [Cla99] presents two semantic models, for the formal 
verification of reactive systems; they are based on simultaneous or interleaving approaches. It is 
argued that the interleaving model is more adequate for modeling and verifying asynchronous 
behaviors. The verification uses special partial order reduction techniques [BNOl] in order to handle 
combinational explosion. In [RC96] a formal verification approach is proposed, in which both circuit 
specification and circuit environment assumptions are modeled using Petri nets. A state encoding is 
associated to this representation, which allows the application of HDD symbolic model checking 
techniques. [YGOl] suggests the use of the LOTOS [EV89] specification language together with the 
CADP [CADP] toolbox for asynchronous verification using model checking. 
All these approaches are subject to state space explosion. A number of techniques, such as hierarchical 
verification [RC95], modular verification [HaOl], abstraction techniques [ZMC99] and Petri net 
unfolding, already deal with this problem. Like in the RTL systems, the verification of asynchronous 
circuits heavily relies on the construction of a compact verifiable model as well as on using an 
adequate verification strategy. 

Conclusion 

We have implemented an asynchronous circuit design flow based on CHP and VHDL, which includes 
automatic synthesis, simulation and formal verification. A variety of small circuits (in the category of 
multiplexors, arbiters, and the like) have been formally verified, by model checking techniques, using 
pre-existing property checking tools that were initially not intended for asynchronous circuit 
verification. However, the current prototype FSM generator is not efficient enough to serve the 
verification of large circuits. Our on-going works concern the development of algorithms for 
generating more compact state machines, and for finding verification strategies adapted to the known 
characteristics of various circuit types, as discussed in the section devoted to the handling of 
combinational explosion. The implementation of these algorithms will be progressively added to the 
TAST environment for asynchronous circuit designs. 
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Abstract 

Distributed shared memory (DSM) systems are central to our advancement 
in terms of high-performance computing. The complexity of DSM protocol 
design stems both from the complexity of the high-level notion of correctness— 
conformance to a modern weak shared memory model—and the degree to which 
these protocols are aggressive. Many similar issues are faced in the design of 
related protocols such as in input/output subsystems. In this paper we provide 
a glimpse of the complexity faced, and our work in progress in addressing these 
issues through model-checking and synthesis using recently proposed challenge 
problems to drive our research. 

1    Introduction 
The computer industry has consistently delivered increasing performance with 
each new generation of processors. To sustain the current level of growth, 
system design and verification complexity must be kept in check. Design and 
verification complexity can be minimized through modular design principles 
that allow design and verification results to be reused, and through provably 
correct automation that allows verification to be done at higher levels. The 
problem addressed in this paper is how to significantly elevate the level of 
modularity and automation in the design of distributed shared memory (DSM) 
systems, where the verification complexity has grown out of proportion with 
raw transistor count. 

The DSM discipline continues to be a dominant organizational paradigm 
for computers. DSM machines may be as simple as a dual-processor desktop 
computer or as sophisticated as the 512-node ASCI White [1] of Lawrence Liv- 
ermore. The inherent verification complexity of these DSM machines will be 
exacerbated by the fact that they will be integrated on single chips. Examples 
of chip level multiprocessors include the IBM Power4 [2], the Compaq Piranha 
[10], and the SUN microsystems MAJC 5200 [3]. These chips consist of ensem- 
bles of processors, instruction and data level 1 (LI) caches, L2 caches, memory 
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controllers, packet switchers, DSM protocol engines, and router hubs. For ex- 
ample, the Piranha has all this functionality available within a single 100+ 
million transistor die. All these processors face a common set of issues when it 
comes to their DSM protocol design: 

• Given the growing computation to communication delays, ownership mi- 
grations and invalidations must be handled inexpensively. 

• Given the finiteness of resources such as buffer locations, transaction iden- 
tifiers, etc, deadlock avoidance and buffer reservation schemes must be 

built into protocols. 
• Given the ever widening gap between CPU speeds and memory system 

speeds, read latencies must be hidden at every possible opportunity. In 
particular, as many operations must be allowed to happen out of order, 
implying that weak memory consistency models [8] be employed. 

The above mentioned problems pertaining to DSM protocol design are, to a 
large measure, shared by emerging I/O system standards such as 3GI0 [4], 
Infiniband [38], as well as protocols used in networked embedded systems such 
as Bluetooth [18]. While many implementation methods provide the ability to 
correct mistakes late in the design cycle (software implementations of DSM pro- 
tocol engines [11, 23], and software [24] or microcode [31, 10] implementations 
of hardware DSM protocol engines, for example), the extent of error recovery 
possible is limited, and the debugging costs are high. 

In this paper, we report on our research in progress at the University of 
Utah which is addressing some of the above issues. The overall goals of our 
research are as follows. First, we aim to develop techniques that apply to real 
industrial-scale protocols. Second, we aim to capture recurring design situations 
as "idioms" and develop reusable verification or synthesis techniques. Last 
but not least, we aim to have "brute force" verification techniques available 
to designers so that they can deploy them on new designs that break past 
patterns, while a formal understanding is being obtained for them. In this 
paper, we present our specific efforts to achieve the above goals: 

• We briefly summarize some of the issues that make DSM protocols com- 
plex. To shed more light on these issues, we examine the Wildfire [26] 

protocol in some detail. 
• We survey some of our past efforts in capturing design patterns and 

setting up a derivational-style synthesis process. We provide a prelim- 
inary evaluation of the success of this approach on the Wildfire protocol. 
This preliminary evaluation reveals how far we can go with respect to an 
industrial-scale protocol, and what remains to be done. 

• We summarize our efforts so far in using "brute force" model-checking, 
and present our plans to make this process more efficient. 

In the remainder of this section, we review some basic terminology and 
briefly survey related work. In Section 2, we summarize some of the general 
difficulties of DSM protocol design, and specific issues that come up in the 
Wildfire protocol. In Section 3, we present the approaches we have tried in the 
past, as well as plan to try in the near future. Section 4 concludes the paper. 

Basic Terminology 

DSM protocols have one purpose: manage the ownership of cache fines so that 
maximal concurrency of access is permitted, and the values returned by the 
reads are according to the desired shared memory model [8].  To understand 



shared memory models, consider a simple example. In a multiprocessor, a pro- 
gram write (A, 1); read(B) running on processor PI and another program 
write (B, 2); read (A) running on processor P2 interleave, producing different 
execution results for the read depending on how weak the memory model is: 
under a strong model such as sequential consistency, one of the reads must 
return^either 1 or 2, while in a weak model such as Total Store Ordering [39], 
both the reads can return 0. To drive home the connection between memory 
models and synchronization code, consider one simple example, namely Peter- 
son's algorithm for mutual exclusion [35]. This mutual exclusion protocol fails 
to work under TSO, but works under sequential consistency. 

In general, modern weak shared memory models are far more intricate than 
either sequential consistency or cache coherence. They support ordinary- as 
well as special reads and writes that obey different ordering properties. Fur- 
thermore, these orderings depend on which address locations - coherent, non- 
coherent, or I/O - these reads and writes fall on. While the weak ordering rules 
impose a burden on writers of synchronization libraries, they provide consid- 
erably more opportunities for compiler writers and hardware designers to gain 
performance through re-orderings. 

The correctness problem that we allude to in this paper is one of showing 
that all executions generated by a DSM multiprocessor for any given concurrent 
program are also allowed by the shared memory consistency model. This goes 
far beyond the scope of what is traditionally known as "cache coherence verifi- 
cation" where the correctness is only with respect to a single address appearing 
coherent (consistent) for all processors. In this sense, both sequential consis- 
tency and TSO obey coherence; however, as the Peterson protocol example 
shows, they are not equivalent shared memory consistency protocols. 

Related Work 

The area of shared memory consistency models is vast. We do not attempt a 
survey; for details, please see [8, 5]. In [19], Grahn studied many contemporary 
DSM protocols in a unified setting. He also compared the implementation 
details of achieving synchronization. The use of formal operational models of 
memory consistency to verify assembly code synchronization routines is studied 
in [16]. In [34], several protocols, including Stanford FLASH [24, 20] are shown 
to be sequentially consistent, using theorem proving. Additional related works 
in specification and verification of DSM protocols include [29, 5, 14, 36, 7, 9]. 

2    Complexity of DSM protocols 

2.1    General issues contributing to complexity 

To provide a concrete context for our discussions, we now take-up one commonly 
occurring design scenario from DSM protocol design: the 'three-way handoff' 
scenario of handling a missed write at a processor, say PI. In this scenario, 
processor PI requests the directory controller of a cache line for an exclusive 
copy of the cache line before it can proceed with the write. The directory 
controller, in turn, requests the current owner (another processor, say P2) of 
the line to forward the fine directly to PI. Completely unawares, P2 may have 
already decided to evict the line, which is in fiight in the form of a line relinquish 

^We assume an initial memory value of 0 at all locations. 



message towards the directory. In this case, the directory controller receives 
an "unexpected" line relinquish from P2 when it was expecting a "forwarding 
to PI done" acknowledgement. In most designs, the directory controller would 
recover from such a state by giving priority to the cache controller's attempt 
over its own attempt. Consequently the directory controller acts as if it has 
been implicitly nackecP. It collects P2's relinquished line and hands it over to 
PI. Over and above these correctness considerations, one must also take into 
account the other crucial factors, such as the following: 

• Message ordering properties of the interconnect medium: usually several 
priority lanes are employed to allow messages to re-order, partly to im- 
prove performance, and partly to avoid deadlocks. Each message above 
must be sent on the 'correct' priority lane. 

• Buffer capacities: Usually, before sending a request, a requester, X, must 
reserve a spare location in its input queue to be able to receive an ac- 
knowledgement from its requestee, Y. However, sometimes a single spare 
location may not suffice, as the following scenario of'tail of buffer livelock' 
illustrates. In this scenario, when the acknowledgement is outstanding, 
another requester, Z, may send a request to X. This may happen precisely 
when Y is about to respond. Since the only available buflfer slot is oc- 
cupied by Z's request, X is forced to send back Y's acknowledgement. It 
then examines Z's request which, it usually cannot process, as X is "in 
the middle of a request itself." X, thereby, ends up naching Z's request 
also. This scenario can repeat indefinitely. 

• Respect the memory ordering semantics: The above protocol actions de- 
scribe how coherence - strong ordering with respect to a single cache-line 
- is attempted to be maintained. It is unclear whether the ordering con- 
straints for multiple addresses as dictated by sequential consistency or 
weaker memory models are being met. 

The Wildfire protocol involves virtually all the above issues plus some, as de- 

scribed in the next section. 

2.2    Additional complexities of the Wildfire protocol 

We first describe briefly the Alpha memory model and the Wildfire cache co- 
herence protocol, which we are using as a driving example in our research. We 
then give some example scenarios that show the complexity of the protocol. 

2.2.1    The Alpha Memory Model 

In the Alpha memory model we consider [26], a processor can issue five different 
kinds of memory requests, which are named Rd, Wr, LL, SC and MB. A Rd is a 
read of a memory address, and the memory responds with a data value. A Wr is 
a write to a memory address. The memory responds with an acknowledgement 
that the write has been performed. An LL is a 'Load Locked.' This is a read 
of a memory address that 'locks' the address for the processor, unlocking any 
other address that might be locked for that processor. The memory responds 
with a data value. An SC is a 'Store Conditional.' This is a conditional write 
of a memory address which succeeds if the specified address is locked, and fails 
otherwise. If it fails, it does not update memory. An SC always (successful or 

^nack stands for negative acknowledgement. 



not) unlocks any address that is locked by the processor. A memory address is 
also unlocked when a different processor performs a Wr or a successful SC to 
an address locked by the processor. The memory responds to an SC with an 
acknowledgement indicating whether the request succeeded or not. An MB is a 
'Memory Barrier.' Two requests from the same processor to the same address 
must always be performed in the order in which they were requested. Two 
requests to different addresses from the same processor must be performed in 
the order they were requested if an MB request was issued after the first and 
before the second. The memory does not respond to an MB. The source of a 
memory operation is the most recent write to the memory address involved in 
the operation (see ordering rules below). 

The orderings that the Alpha memory model imposes on the above five 
operations are as follows: 

• A request rj precedes another request r2 if ri is the source of r2. 
• ri precedes r2 if ri and r2 are requests from the same processor, ri pre- 

cedes r2 in the request queue, and either at least one of them is an MB, 
or they are requests to the same address. 

• Writes and successful SCs to the same location that have issued responses 
are totally ordered. 

• LL's and successful SCs are properly paired, without intervening writes 
by another processor to the same address. 

2.2.2    The Wildfire Protocol 

The Wildfire cache coherence protocol was designed to implement the Alpha 
memory model. It models a NUMA shared memory system, and consists of a 
network of processors and memory connected to local switches, which are all in 
turn connected to a single global switch. An example is shown in Fig 1. The 
global space of memory addresses is partitioned among the local switches, with 
each address belonging to exactly one local switch, which is the home node for 
that address. Each processor has a cache that contains local copies of some 
addresses. Wildfire is a directory based cache coherence protocol where each 
local switch maintains a directory with entries for each address that belongs to 
it. Each entry has information on which processors currently have a copy of 
that address in their local cache. 

Processors communicate with each other and with local switches through 
messages. If a processor needs to send a message to a local switch other than 
the one it is attached to, it sends the message to its local switch, which relays 
it to the global switch, which in turn relays it to the correct local switch. 

Processors are connected to their local switch by two unidirectional queues. 
The same is true for local switches and the global switch. Messages in the 
queues are allowed to reorder, subject to certain constraints. All request and 
control messages travel along this set of queues. There is also a separate network 
of queues that connect processors directly to one another. These queues are 
used only to send actual data values by the owner of an address. 

An entry in the processor's cache is in one of the following states : 

• Exclusive: This is the primary copy of the data. The processor can read 
or write it. 

• SharedClean: The copy is a secondary, read-only copy. 
• SharedDirty: This is the primary copy of the data, but it is read-only (The 

state was Exclusive, and then some other processor requested a read-only 
copy). 
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Figure 1: Example of a Wildfire multiprocessor system 

• Invalid: The cache does not contain a copy of this address. 

The state of a cache line changes as a result of the various requests that 
processors issue, and the responses to those requests. As mentioned earlier, 
these communications are carried out through messages. An indication of the 
complexity of the protocol is that there are 13 different types of messages in 
the protocol, and there can of course be multiple messages of each type at 
any given time in the system. Completing a single memory operation (such 
as a Wr or a Rd) can require exchanging as many as seven messages among 
three different components of the system, all of which can be interleaved and 
reordered with other messages in the system. There are many other subtleties 
about the protocol that lead to its complexity, but are beyond the scope of this 
paper. Please see the full Wildfire documentation at [26] for more information. 

2.2.3    Scenarios of the Wildfire protocol 

We now discuss some scenarios that illustrate the complexity of the Wildfire 
protocol. First, we describe how Wildfire handles the situation described in 
Section 2.1. A processor maintains multiple versions of the same cache line, 
each with a possibly different data value. Thus, when a processor evicts a cache 
line, it does not delete the version of the cache entry until an ack for the eviction 
has been received. So when its evict message crosses over with the request from 
the directory to forward the line, it can handle the forwarding request, since it 
has kept the version around. This data is then directly sent to the requesting 
processor via a separate 'fill channel.' 

Our second scenario describes what is known as the shadow mode in the 
Wildfire protocol. For this scenario, suppose that processors pi and ps and 
address ai are on local switch Isi, and processors p2 and p4, and address 02 
are on local switch /s2. Also, assume that pi has the primary copy of 02 in it's 
cache, and similarly p2 has the primary copy of ai. Now, the following events 
occur [26]: 

- pi requests a copy of ai. 



— Pi's request reaches Zsi, which sends a request towards p2 to forward the 
data to pi, and updates it's directory entry for ai to record pi as the new 
owner. 

— p2 requests a copy of 02- 

— p2's request reaches ls2, which sends a request towards pi to forward the 
data to p2, and updates it's directory entry for 02 to record P2 as the new 
owner. 

— p3 requests a copy of ai. 

— Pa's request reaches Isi, which directly puts a request to forward the data 
in pi 's queue. 

— p4 requests a copy of 02- 
— p4's request reaches ls2, which directly puts a request to forward the data 

in p2's queue. 

— Lots of other unrelated messages enter the queues for pi and p2 

— The forward request for pi to send the line 02 to p2 reaches Isi 

— The forward request for p2 to send the line ai to pi reaches ls2 

Now, the request for pi to forward the line ci to pa is at the head of pi's 
queue, but it cannot handle it yet, since it does not have the line ai (though the 
directory Isi thinks it does). Similarly, the request for p2 to forward the line 
a2 to p4 is at the head of its queue, but p2 cannot handle it either, since it does 
not have the line 02- The request for p2 to forward the line ai to pi is stuck 
at ls2, since p2's queue is full with the other unrelated messages. Similarly, the 
request for pi to forward the line 02 to p2 is stuck at Isi, since pi's queue is 
full with the other unrelated messages too. We have now reached a deadlock, 
essentially due to the fact that ps's (p4's) request for line oi (02) gets directly 
inserted intopi's (p2's) queue. 

This situation is avoided in Wildfire by the use of 'shadowing'. What this 
says is that whenever an address that is owned by a directory is in the cache of 
a processor not directly connected to that directory (local switch), all messages 
related to that address must go through the global switch, even if both the 
source and destination of a message are on the same local switch. In the above 
situation, this condition will result in pa's (p4's) request for line ui (02) to be 
routed through the global switch, ensuring that either pa's request for aj will 
end up behind p2's request for 02 in pi's queue, or p4's request for 02 will end 
up behind pi's request for ai in p2's queue, thus eliminating the deadlock. 

It is nontrivial to prove that the above solution works in general, and actu- 
ally involves proving that Wildfire satisfies the liveness property of the Alpha 
memory model. 

Hopefully, the above scenarios will serve to convince the reader that today's 
memory consistency protocols are highly complex systems, and hence verifying 
their correctness is commensurately hard. 

3    Verification Effort 
In this section, we describe our eff'orts at verifying the Wildfire protocol. We 
discuss our attempts at using the TLC model-checker[25] (3.1), the Mnvcp sys- 
tem [15] (3.2), and an experimental synthesis technique [30] (3.3). 



3.1 Verification using TLC 
Both the Alpha memory model specification and the Wildfire protocol are writ- 
ten in TLA[27], which is a logic for specifying and reasoning about concurrent 
systems. Hence, our initial attempt to verify the Wildfire protocol focussed 
on using TLC, which is an explicit state enumeration based model checker for 
specifications written in TLA. We soon realized, however, that TLC would not 
be adequate, for two reasons. For technical reasons that are beyond the scope 
of this paper, TLC cannot handle specifications that are not machine closed, 
which is the case with the Alpha specification. A specification is said to be 
machine closed if it's hveness property does not introduce additional safety 
properties into the system [6]. The second, practical reason is that TLC is 
written in Java, making it extremely slow. The Wildfire model was allowed to 
run for seven days, and TLC had only explored around 15 million states, for 
a rate of around 1400 states/minute. This was unacceptable for any practical 
verification to be done. The TLC verification run did find a 'bug', but that 
turned out to be a bug in TLC itself, and not the protocol. This was reported 
to the authors of TLC, who have said that TLC will be fixed to remove this 
bug. This bug has to do with the way TLC handles conjunctions. 

3.2 Verification using Munp 
We next decided to code up the Wildfire protocol in a different modeling lan- 
guage, so we could carry out the verification with another tool. We debated on 
whether to use a symbolic state representation based tool such as SMV [28], 
or an explicit state enumeration based tool like Mury? or Spin. SMV was ruled 
out as its input language is too low level for coding the protocol at the required 
level of abstraction. Also, based on the experience of Hu [22], it seemed Ukely 
that there would be a considerable blow-up in the BDD size. In the end, we 
decided to go with Murv?, as it has a reasonably expressive input language, and 
is also quite efficient. The Munp coding effort took about a month. During 
this time [37] adapted an existing parallel version of Muvip to run using MPI 
libraries, so it could be run on a network testbed at the University of Utah 
which provides up to 172 networked workstations to run experiments on. The 
sequential version of Muvfp soon consumed all the memory resources of the 
largest single machine at our disposal, which is an SGI with 4 GB of RAM. 
We then started a run of the parallel version on the network testbed. Each 
machine in the testbed has 512 MB of RAM. Our initial experiment with 15 
such nodes explored about 3.3 million states in 4 minutes before crashing the 
system. This crash is thought to be due to a bug either in the MPI libraries, or 
the port of Munp to MPI, and is being investigated. But the important lesson 
we learned is that even for the small instantiation of the problem we chose, 
with two processors, one address, and queue sizes of three, the theoretical total 
state space is around 48 million (using hashing of the state vector to 40 bits), 
suggesting that for a realistic instantiation, the state space might be beyond 
the capabilities of conventional model checking. This has lead us to explore a 
completely different technique for deriving such protocols, which we discuss in 

the next section. 

3.3 DS]V[ Protocol Synthesis 
There have been very few attempts at developing formal approaches to DSM 
protocol design that take higher level protocol specifications and generate effi- 



Figure 2: Directory and Cache controller Protocols of Migratory Scheme 

cient protocols. We call the higher level protocols atomic transaction protocols 
and the lower level protocols split transaction protocols. In all the approaches 
we have seen, it is assumed that protocol designers must take charge of creating 
the split transaction protocols manually for obtaining maximally efficient imple- 
mentations. However, this approach is highly error-prone. The main difficulty 
is the huge semantic gap between shared memory models and split transac- 
tion protocols. Protocol synthesis is feasible because the techniques employed 
by designers for handling ownership transfers, performing invalidations, and 
speculative protocol execution in real protocols tend to recur quite frequently. 
Protocol synthesis will allow verification to be employed at a higher level of 
protocol representation. This, in addition to reducing the state space, will ren- 
der DSM protocol behavior semantically closer to human intuition, unlike in 
today's approaches where the low level state-space mixes the important (e.g., 
synchronization completing) with the mundane (how one message overtakes 
another inside a buffer). 

Previous work in our group [30] has demonstrated the feasibility of protocol 
refinement. We defined a formal refinement relation, and showed, using the 
theorem prover PVS [32], that the protocols synthesized by our rules stand in 
this relation with respect to the atomic transaction protocols. It was shown 
there that the atomic transaction protocol for a two processor Avalanche system 
[13] had only 54 states, whereas the spht transaction protocol had 23,000 states. 
Since our aim is to do the verification on the atomic transaction protocol, this 
has the potential to significantly reduce the state space. We briefly summarize 
our past work in the next section. 

3.3.1    A brief overview of protocol synthesis through refinement 

We adopt the CSP notation of Hoare [21] and model ownership transfers as 
atomic transaction steps (using the rendezvous construct of CSP). In Figure 2, 
we illustrate such a protocol description. In this description, the ownership 
of a cache line is managed under a migratory-style protocol: the line access 
rights migrate from node to node. As a specific example, assume that there 
are two cache controllers Cl and C2 executing a cache node protocol begin- 
ning in state I (invalid), and one directory controller D executing the directory 
protocol beginning in state F (the line is 'free'). When Cl suffers a cache miss 
(the rw transition), it attains state Tl, and sends a request to the directory 
controller. We show the act of sending this request through the rendezvous 
statement h! req. This statement is jointly executed with the matching state- 
ment r(i)?req of D. Note that we do not mention how this rendezvous is 
realized. All that the specification writer needs to think about is that the state 
of D and Cl (viewed as a pair) advances from (F,T1) to (T1,T2) atomically. 
D then executes the r(j) !gr(data), granting the data and line ownership to 



Cl. This again causes an atomic advancement of the state from (T1,T2) to 
(E,V). Suppose C2 now suffers a miss, attains state Tl, and sends a request to 
D. The joint moves of D and C2 will now be from (E,T1) to (II,T2), the state 
where D is preparing to invalidate Cl (which is, recall, in state V). Then, D 
and Cl execute the joint move (II,V) to (12,T4) to (13,1), completing the 
invalidation of Cl. Then, D and C2 execute the joint move (13,T2) to (E,V), 
where D now records the ownership of C2. 

Notice that while D and C2 were in state (I1,T2), Cl could have decided 
to autonomously evict the cache line, attaining state T3. Unfortunately, if D 
now initiates the rendezvous r (o)! inv, instead of a matching action occurring, 
what occurs is a rendezvous initiation by Cl for another statement, namely 
h!LR(data). This is quite akin to situations that have been faced by past re- 
searchers when they studied the problem of implementing CSP on a distributed 
platform using generalized input- and output guards [12]. Unfortunately, their 
solutions are too "heavy weight" for our purposes. Our solution to handle the 
above "apparent deadlock" situation is to somehow make D aware that it has 
been nached (in our static priority scheme, it is D that always backs-off in such 
situations). We then make D bounce back to state II, and participate in the 

LR rendezvous which can now succeed. 

Synthesis into split transactions 

Split transactions (handshakes) consist of asynchronous (non-blocking) sends 
and receives. A rendezvous construct h!req is initiated through an asyn- 
chronous send, denoted h! !req. The handshake completes when a reply mes- 
sage h??req is received back. For simplicity, in our past work we disallowed 
a cache controller process from having a generalized guard (input and output 
actions present). In fact, if a cache controller process has an active rendezvous 
(of the kind 'p!E'), then it must be the only guard in a communication state^. 

Thus, the rendezvous of a cache controller must not fail - while that of the 
directory controller can be nached. (This decision stems from what is really 
practical: a directory controller can be nacked; however, if a CPU misses on 
a cache line, and its cache controller sends a request for that line, there is no 
option but to supply that line.) We also imposed the discipline that a cache 
controller may not communicate directly with another cache controller. While 
this decision simplified our algorithm, it prevented certain advanced types of 
refinements to be elaborated shortly. We will revise these decisions in our future 

work. 
A brief overview of our synthesis procedure is as follows. The cache con- 

troller is either in an 'internal' (non-communication) state or a communication 
state ^. Assume that it is in the latter. It must then reserve a buffer location 
to receive a reply, and then send out a request for rendezvous. If this request is 
nacked (say, because of buS'er capacity running out at the directory controller), 
it must retry its request. The directory controller, on the other hand, must 
reserve two free locations before it initiates a rendezvous. The extra location 
is to prevent the 'tail of buffer livelock' scenario illustrated earlier. It must try 
to engage in one of the rendezvous allowed by its communication state. Un- 
like a cache controller, a directory controller can be written with generalized 
guards. It can try these guards in turn. Figure 3 illustrates the refined (split 

^A communication state is one where one of the guards is a communication action. 
^Notice that as in CSP 1978, we named processes directly and did not use channel names. We 

may revise this decision in the present work. 
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Figure 3: Refined Directory and Cache controller Migratory Protocols 

transaction) protocols of the directory and cache controllers. While space pre- 
cludes a full explanation, the asynchronous handshaking and details of nack 
handling are highlighted by this figure. We argued, using paper-and-pencil, 
that our algorithm ensures forward progress. Our algorithm can also elegantly 
handle the earher mentioned 'unexpected' situation' of P2 relinquishing a hne 
concurrently with the directory controller requesting it. 

We showed, using the PVS theorem prover [33], that the split transaction 
protocol provides all (and only) those executions that are allowed by the atomic 
transaction protocol. In other words, the sequence of completed rendezvous 
in the implementation is one of the ones allowed by the specification, and 
furthermore, all the ones in the specification are realized by the implementation. 
Thus, if a designer writes code to performs cache- and directory update activities 
around such as 'synchronization skeleton' at the atomic level, the same activities 
will manifest at the spht transaction level. The biggest advantage of the split 
transaction level is, of course, that it is implementablel The atomic transaction 
level is easier to understand and verify, but cannot be implemented directly. 

An Assessment 

We applied the technique described in [30] by hand to the Wildfire protocol. 
We found that if we had the following three synthesis rules in our algorithm, 
we could have synthesized all high-level aspects of the Wildfire protocol: 

— The three-way handoff scenario, as described above in Section 2.1. 

— A scenario that stems from three-way handoff. In this scenario, P2 must 
keep a copy of the cache line around, should the directory be allowed to 
sending "forward" requests from other nodes towards P2. This capabil- 
ity is, actually, necessary whenever three-way handoff is used because of 
the arbitrary delay between when P2 relinquishes ownership to when the 
directory becomes aware of that. 

— A still more intricate scenario found in Wildfire. This scenario must be 
supported only if the designer is (as in Wildfire) extremely aggressive, 
and allows P2 to re-acquire as well as relinquish the very same cache 
fine multiple times, while it is waiting for the directory to receive and 
acknowledge its very first relinquish! (In Wildfire, this forces P2 to keep 
multiple versions of the line - "one for itself" and the others for "forward 
requests".) 

These results have encouraged us to pursue the goal of protocol synthesis 
further. We discuss our plans for enhancing current techniques, and other 
future work, in the next section. 

11 



3.4    Future Work 
We plan to attack the problem of verifying the correctness of DSM protocols 
from two different directions. One approach will be to try and develop better 
techniques for verifying existing split transaction protocols. Towards this end, 
we are in the process of developing a partial order reduction algorithm to be 
implemented in Murip. This will be a reformulation of the classical partial order 
reduction algorithm [17], without the notion of processes. All implementations 
we have seen use heuristics based on partitioning the transition relation based 
on processes. We plan to use a different technique to partition the transition 
relation. The advantage is that this technique can then be used on systems 
that are modeled directly as transition systems, without any clear distinction 
of processes. We also believe that in some cases, this may result in more partial 
order reductions than in the classical algorithm. 

Our other angle of attack is to further develop the idea of DSM protocol 
synthesis, by adding rules to the synthesis algorithm that exploit re-orderings 
permitted by the underlying memory model. This will result in more efficient 
synthesized protocols, that will be competitive with hand-designed protocols. 
Even if the synthesized protocols are not as efficient as the latter, the big advan- 
tage will be that they can be designed quickly (and, we hope, automatically), 
and verified more easily, since the synthesis algorithm has to be verified only 
once, and then, whenever a protocol is synthesized, it will be correct by design, 
as long as we verify the atomic transaction protocol separately. 

4    Concluding Remarks 
This paper reports work in progress in our group at the University of Utah 
on distributed shared memory protocol verification. We report our specific 
efforts relating to a recently proposed challenge problem by Lamport called 
the Wildfire challenge [26]. We are very impressed that the bug seeded in this 
protocol was recently discovered by one individual simply through inspection! 
No other success, either using inspection or verification tools, has, hitherto been 
reported. Even if one were to have luck verifying this particular protocol using 
today's tools, the state of the art of designing and verifying such protocols is 
nowhere close to being routine. Our long-term goals are to understand how 
such protocols are created, and to base design on refinement, as in our group's 
past work reported in [30]. Ultimately, we feel, the complexity of verification 
must be addressed at design time. 
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Abstract 

Fault tolerant systems are an important class of system, often used in safety critical or highly available 
applications. For these systems, as well as verifying the functional and timing properties we must 
verify that the fault-tolerant mechanisms do protect the system in the ways expected. 

This report proposes an integrated framework for specifying and verifying fault-tolerant systems: 
functional, timing and fault tolerance properties.. The specification is given using a temporal logic, 
TL, as a set of assertions of which describe the behaviour as well as the faults which should be 
tolerated. The faults themselves are represented as trigger-action pairs: the trigger says when a fault 
manifests itself, and the action says how the fault manifests itself. 

The system being verified is represented as a finite state machine (FSM). The fault descriptions 
are used to construct observer and saboteur FSMs, which when composed with the original FSM 
allow a wide range of faults be modelled and fault tolerance properties verified. The verification is 
done using a model checking algorithm called symbolic trajectory evaluation. This framework has 
been implemented in the VossProver verification system, and a case study has been carried out, with 
promising experimental results. 

1    Introduction 

The importance of building fault-tolerant systems for safety-critical applications has been recognised 
for well over 30 years. Given their purpose, it is especially important to validate that they do have 
their desired or claimed fault tolerance properties. Some very successful evaluation schemes have been 
proposed, typically using schemes of fault-injection coupled with testing (see [11] for a discussion). 
Although testing-based techniques are successful, there are some limitations to these approaches: fault 
tolerance properties are often expressed informally; and just as exhaustively testing functional properties 
of a system is an intractable problem, so is testing fault tolerance properties. Though a high degree 
of confidence can be obtained using the appropriate testing methods, this is highly computationally 
intensive, and there must still be uncertainty about the result. 

In other domains, formal methods have been proposed as a solution to these problems, and especially 
with hardware verification a large degree of success has been obtained [13]. Although formal methods 
have also been used in verifying fault-tolerant designs or specifications (e.g. [3, 14, 15, 18]) formal 
methods have not had wide-spread use in verifying fault-tolerant systems, especially verifying designs at 
a relatively low-level of abstraction. 

This report explores the use of formal methods in specifying and verifying fault-tolerant hardware 
systems. The key questions explored are: 

• What is a suitable language for specifying the desired fault tolerance properties? 

• How can formal verification techniques be used for verifying these properties? 
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This report proposes a method of expressing fault tolerance (FT) properties of interest, and a comple- 
mentary method of verifying these properties. Using these methods, the following design methodology 
is proposed. (1) The system is formally specified — both nominal and FT behaviour (2) The basic non- 
fault-tolerant design is verified (where this design can be clearly distinguished from the fault-tolerant 
one). (3) The third phase is the verification of the fault-tolerant design without the presence of faults 
(to show that the introduction of fault tolerance has not introduced errors). (4) The final phase is the 
verification of the circuit in presence of faults to show that the fault tolerance mechanisms work. The 
main focus of this paper is the specification and verification of FT properties. 

Outline ■ Section 2 presents the basic framework for specification and verification (based on tempo- 
ral logic and model-checking). Section 3 presents a method of specifying and verifying fault tolerance 
properties. Section 4 presents a case study to evaluate the approach and identify its strengths and weak- 
nesses. Section 5 concludes and suggests appropriate future research. 

2   Framework for specification and verification 

The choice of a specification language is difficult because there are many competing requirements of 
both a technical and human origin. Natural language and first-order logic are both expressive, but neither 
are ideal. Natural language specifications are imprecise, and first-order logic specifications may quickly 
become too detailed to be understandable. .    . 

This paper explores the use of a temporal logic for expressing FT properties. The major motivation 
for this is that temporal logics have proved very useful for specifying functional and timmg properties of 
systems, so if a temporal logic can be used for expressing FT properties as well, a uniform framework 
can be provided for specification. So it is useful to know the strengths and weaknesses of a temporal 
logic based approach to specifying fault-tolerant systems. 

2.1    The logic XL 

Only a brief introduction to the logic is given here - for details see [9]. Systems are modelled as finite 
state machines, i.e., by a set of states S and by a deterministic next state function Y : 5 -> 5. (Note that 
the state space is modelled as a lattice which allows a certain amount of non-determinism to be expressed 

implicitly [6, 17].)  . .       ,.   ^ 
The specification is done using the temporal logic TL [10]. The core of TL is a set of predicates 

which allows the description of the instantaneous state of the system, e.g. whether a node m a circuit 
has a certain value or whether two nodes are related in a certain way. We denote the set of core simple 
predicates G. Typical predicates might be: [Clk] = H (is the clock high?); [Reset] = L (is the reset 
line low?); and [Score] < 16 (is the value of group of lines identified by Score, when considered as a 
bit-vector, less than 16?). 

Predicates are combined using logical operators such as conjunction and negation, and temporal 
operators which allow us to refer to time-dependent behaviour. TL has two temporal operators: next-time 
and until In practice, only the next-time operator is used. Although TL is comparatively mexpressive, 
it has been used successfully in a range of examples [9], and its simplicity supports a very efficient 
model-checking algorithm. The syntax of the logic is given by the following BNF — 

TL::=   G \ TLATL | -^TL 1 NextTL | TLUntilTL. 

While the truth of a predicate is evaluated with respect to a state, the truth of a TL formula is given 
with respect to a sequence of states, since it can refer to a number of time instants. The informal seman- 
tics is that the first state in the sequence refers to time 0 and successive states in the sequence refer to 
successive instants in time. The formal semantics of a formula is given by the satisfaction relation Sat 
(Sat: 5"^ X TL -> Q). Given a sequence a and a TL formula g. Sat returns the truth of g with respect to 
the sequence a. Notation: Let a = sosiS2 ■ • • be a sequence in S: then ai = su and a>i = SjSi+i.... 



Definition 2.1. Semantics o/TL 
1. Ifg e G then Sa.i{a, g) = g{so). 2. Sat{cr,gAh) = Sat(cr,5) ASat(cr,/i) 
3. Sat((7,->p) = -iSat(a,3) '^- Sat(cr,Next5)  = Sat(cr>i,g) 
5. Sat(CT,ffUntil/i) = V^o(Sat(CT>o,5) A ... A Sat(a>i_i,5) A Sat(CT>i/i,)) 

Examples and Derived Operators: Disjunction and implication are examples of derived operators. 
Other derived operators are possible. The most important derived operator is the During [)   operator 

defined as: During[(/o,to),... , (/„,i„)] g = A'J_Q{A^^J. Next'^g), which asks whether g is true 
from time /o through to, fi through ti,... , and from /„ through tn- Here are some examples. 

• diff {[Output], XI + X2) < 2 * delta. Is the absolute difference between the value on the set of 
hues denoted by Output and the sum of xi and X2 less than 2 x deltal (Names of state components 
are in square brackets, so here Output is the name of a state component, while xi, 0:2 and delta are 
variables and diff is a function.) 

• [Clk] = H] A Next^°([CZfc] = LA[Reset] = L): at time 0, is the clock high, and at time 10 are the 
clock and reset lines low? 

• During [(0,9), (20,29)] {[Clk = L]) A During [(10,19), (30,39)] {[Clk = H]) A 

During [(0,2)] {[Reset] = H) A During [(3,39)] {[Reset] = L) 

The formula asks if the clock is low for 10ns, then high for 10ns, then low for 10ns, and then high 
for 10ns; and whether the reset Une is high for 3 ns (time 0 through 2 inclusive), and then low from 
time 3 to time 39. 

2.2   Specification of systems 

The specification of a system's nominal behaviour is given by a set of assertions. Each assertion consists 
of a pair of TL formulas, and is written like this: {g=^h). If a model M satisfies this assertion, in 
every run of the system in which g is true, h is true too. g, the antecedent, can be thought of as supplying 
the 'input' or 'stimulus' to the circuit, while h, the consequent is the expected reaction to the stimulus. 
Where necessary we write M \= {g=^h) to emphasise that the assertion is about model M. 

Both functional and timing properties can be specified this way. For example, the following specifica- 
tion could describe the behaviour of a multiplication circuit, describing the result (including bit-widths), 
when the inputs must be stable and when the output will be stable: 

During [(0,9), (20,29)] {[Clk = L]) A During [(10,19), (30,39)] {[Clk = H]) A 

During [(0,39)] [A] = x[7 - 0] A[B] = y[7 - 0] A 

During[(35,39)] [C] = {x x y)[15 - 0] 

Significant technical detail has been omitted here. For example, the state space is a lattice - which 
is used for abstraction - and the truth domain is a four-valued logic rather than a boolean one. Partly 
the omission is for space reasons, but also because the methodology of verifying fault tolerance systems 
proposed here does not rely on the particular temporal logic used, or the model-checking algorithm used. 
Interested readers should consult [9, 10]. 

2.3    Symbolic Trajectory Evaluation and the VossProver Verification system 

Symbolic trajectory evaluation (STE) is a model-checking algorithm due Bryant and Seger [17], and 
extended by Hazelhurst and Seger [9]. It is particularly suited for hardware verification, especially 
where accurate models of system behaviour, including timing are important. STE has a complementary 
compositional theory, and has been applied to a range of different circuits [9]. 

The VossProver verification system is built on top of Seger's Voss system [16]. The Voss system 
consists of three major components: an efficient implementation of binary decision diagrams [5]; an 



event driven symbolic simulator with comprehensive delay and race analysis capabilities; and a general 
purpose, functional language called FL. STE's compositional theory has been implemented as a simple 
proof system in the VossProver [8]. Using FL as a script language, a verifier can interact with the proof 
system to either perform STE on a circuit or to use the compositional theory. 

Circuits to be verified are represented internally as finite state machines. These FSMs are constructed 
automatically from gate-level or switch-level circuit descriptions and a number of standard input formats 
are supported. Voss also has its own format, called EXE. The FSM models that Voss builds are accurate 
models of the circuits, including timing. 

3   Specification and verification of fault tolerance 

3.1 Specifying fault tolerance properties 

A fault is modelled with two components: a trigger and a corresponding action. The idea is that the 
circuit behaves normally, but that whenever the trigger is true, the behaviour of the circuit is modified (as 
little as possible) so as to make the action true as well. To specify fault tolerance properties, assertions 
are generalised to contain four pieces of information (the antecedent and consequent as before; a fault 
trigger; and a fault action) and is denoted thus g =» h where 6 triggers (j) (called f-assertions). 

Informally, the intended meaning of g =» h where 9 triggers (j> is that in every run of the machine 
M, whenever g is true, so is h whether or not the fault described by 9 triggers cj) occurs. Since the 
antecedent, consequent, trigger and action may refer to the same circuit components and variables (or 
different ones), an f-assertion can express a variety of behaviours in the face of faulty and non-faulty- 
behaviour. 

In this framework, the trigger and the action can be any TL formulas. However, the exploratory study 
of Section 4 makes the following restrictions: only the non-temporal fragment of the logic can be used; 
and the action must non-ambiguously describe the fault for any affected nodes in the circuit. 

The primary motivation of this restriction is not so much ease of implementation and efficiency of 
verification but simplicity of specification. The semantics of what is meant when temporal operators 
are used in both the trigger and action are tricky and requires some study. Examining the strengths and 
weaknesses of just using the non-temporal fragment of the logic is a meaningful and useful start, and 
indicates where extensions are necessary. 

3.2 Modelling faults 

So far we have modelled the finite state machine as if it were monolithic. In fact, for circuit models a 
convenient and efficient way to model the circuit is to represent the state of the system as a tuple, with 
each node (state-holding component) in the circuit making up one component of the tuple. Thus, if a 
circuit has n components, then 5 = C" where C is the set of values that an individual component can take. 
Similariy, the next-state function is decomposed into n next-state functions, one for each component. So, 
if s = (si,... , Sn), Y(s) = {Yi{s),... , Yn{s)), with each Yi being of type S -^ C. For convenience 
we name each node by its index in the tuple description of the state space. 

Let 9 triggers (?!> be a fault.  Let FA be the set of nodes that are described in ^ and for each node 
j e FA, let Vj be the value required for cf) to be true. We modify each Yi so that it reflects the faulty 
behaviour if it happens. 

-    s def iYiis) i ^ FA 
Fonnally, define yi(s) = <        ,.    ,,,, ,     ,     .     „. 

■^ [combine{Yi{s),Vj)    i e FA, 
where combine combines the correct value and the faulty value in the appropriate way. If 9{s) is false, 
combine produces the correct result; if 9{s) is true, combine produces the faulty value. (The actual 
implementation of combine is more complex than described here to take into account the lattice state- 
space: readers familiar with STE should note that combine is monotonic. 



def 
The global next state function that takes into account the fault is Y(s) =' (yi(s),... ,yn,(s))). 

Finally, we can define our 'faulty' FSM to be M ^= (5, Y). 
Note that if all temporal logic formulas were allowed in fault descriptions, then the definitions pre- 

sented here would need to be generalised. This is a topic of further research. 

Semantics of an f-assertion:    Given a model M, the formal semantics of an f-assertion 
g =^ h where (j) triggers 6 is given by 

•^ N 5 =^ ^ where ^ triggers 0   =      M.\={g=^h). 

3.3    Verifying f-assertions 

The verification of f-assertions is accompHshed by combining STE and the idea of saboteurs presented 
in [1]. The basic idea is as follows: 

• Suppose we wish to show jVf |= 5 =^ h where (f) triggers 6; 

• Construct an observer machine Mo able to observe the state of M. When Mo detects that 0 is 
true of the current state of A^, it sets an internal flag to trigger the fault (see also [2, 6] for other 
work which has used the idea of observers); 

• Construct a saboteur machine Ms that can inject the fault into M. When Mo triggers the fault, 
the saboteur 'hijacks' the machine M and injects the fault described by 6. 

• A new machine M, which is the composition of M, Mo and Ms is constructed. 

• We verify M |= {g=^h). 

All the constructions described above are done automatically and the only human intervention required 
is the provision of the circuit description and the f-assertion. The algorithms that perform these construc- 
tions and compositions have been implemented in the VossProver system. 

4   A case study 

This section explores the methodology presented in the previous sections through a case study. The 
system chosen as a case study is presented in [12] and described in detail in [4]. The overall architecture 
of the system is presented in Figure 1. 

actuator sensor n r 
SI 

actuator sensor 
n   r 

S2 

actuator sensor n r 
S3 

network 

Figure 1: Overall architecture of system 

The system has n channels (here, 3 channels, labelled S], S2 and S3).  Each channel communicates 
with its environment, taking in data from sensors and then issuing commands to actuators. The channels 



communicate with each other on a network. The basic premise of this system is that by implementing 
the system with n channels, the system is able to tolerate faults, either of sensors or of the channels 
themselves. 

The channels operate the same protocol (described in detail in [4]). In each round of operation the 
channels all go through 11 phases, and one of the channels acts as master. The protocol works by each 
channel reading its own sensor data, broadcasting its sensor data to the other channels, followed by 
a process of agreeing on the data to be used and the result produced. There is also a mechanism for 
electing a new master. 

Fault tolerance is also provided internally. Each channel consists of two nodes and an internal con- 
nection. One node is the control node that actually performs the above steps. The monitor node performs 
exacdy the same steps, except that it does not communicate its results outside the channel. However, if 
the monitor and control produce different results, there is simple circuitry that disconnects the channel 
from the external network, ensuring fail-safe behaviour. Also, if either the control or monitor do not read 
inputs quickly enough, the channel will be extracted from the circuit. There is an error state into which 
a channel goes if such problems are detected; a channel only moves out of the error state if reinitialised. 

The implementation examined here was based on the design described and used in [4]. That imple- 
mentation was given in behavioural VHDL. The design was translated into Voss EXE format (essentially 
a gate-level description). Though the translation was done by hand, in principle this step could be au- 
tomated. The major difference between the behavioural VHDL and EXE implementations is the way 
in which time is dealt with. In behavioural VHDL, it is possible to describe behaviour like 'wait 10/is' 
directly, which is not possible at the gate-level. At the gate-level a clock has to be introduced to deal 
with time. For convenience of specification, only one clock is used in this implementation, but it would 
be straightforward (though the specification would be more cluttered) for each channel to have its own 
clock. For the version of the system where data and addresses are 32-bit numbers, the circuit had over 
100 000 gates and 10 000 state-holding components (the implementation is rather crude!). 

4.1    Verification of nominal behaviour 

The specification and verification of the nominal behaviour of this system (i.e. the behaviour without 
faults) is an interesting exercise in its own right. However, as the main point of this paper is the specifi- 
cation and verification of fault-tolerant behaviour only a few points are sketched here. More detail can 
be found in [7]. 

A complete specification requires many assertions to be given. In the case study, six sample assertions 
were verified. The two basic goals were to show that: 

• When the system is initialised, the first channel initialised is declared master, and the first round 
of operation is correct. 

• If at the beginning of a round the system is in a consistent state, and one of the channels is the 
master, then the circuit works correctly and ends the round in a consistent state. 

Description of clock: As this circuit is clocked, we need to refer to the clock. The TL formula, 
ClockAnt is defined to do this. The clock goes up and down for 30 clock cycles each of 100ns; for the 
first half of the cycle the clock is low and the second half it is high. Formally the definition is: 

During [(0, 49), (100, 149),  ..., (2900, 2949), (3000, 3049)] Clock = F and 
During [(50, 99), (150, 199),   (2950, 2999), (3050, 3099)] Clock = T 

Specifying the new master: The informal specification of the circuit is that at the end of each round, 
tiiat channel which had the sensor that produced the median value of all sensor values should be elected 
master, i.e., if the channel picked the right value, it should be the master next round. This turned out 
to be an interesting property to specify. A direct translation of the informal specification turns out to be 
wrong since more than one channel can pick the same sensor value. Instead this property is specified as: 



For each channel, if it is the master then it picked the median value; and exactly one of the 
channels is the master. 

The formal definition is given by 

During   (2700,   2749) 
(if_c  SlcontrPstatus  then_c  sl_got_med)   &   (if_c  S2cont:Pstatus  then_c  s2_got_med)   & 
(if_c  S3cont:Pstatus  then_c  s3_got_med)   & exactly_one_master_active 

where Sxcont: Pstatus is a flag that indicates whether channel x is the master. The auxiliary formula 
sl_got_medis defined to be si [3-0]= median [si [3-0] , s2 [3-0] , s3 [3-0] ] (and simi- 
larly for channels 2 and 3). exactly_one_master is just the exclusive or of the status components 
of each channel (the component has a high voltage if it is the master, a low voltage otherwise). 

4.2   Verifying fault tolerance behaviour 

As with the nominal behaviour, many aspects of the fault tolerance behaviour can be checked. A primary 
criterion for a specification language is that it should allow the properties to be expressed in meaningful 
and concise way. We need experience in specifying fault-tolerant behaviour and this is one of the goals of 
the paper. The examples given below illustrate the type of fault tolerance properties that can be checked. 

Stuck at faults: This is a fault which always occurs, or at some time becomes true always. Here is 
an example of how such a fault can be modelled: t triggers {[Slcontnwval] = f). This says that the 
network validation signal of channel SI is always false. We want to show that in this case, the other two 
channels still work, and agree on the right value (in this implementation, the median of two numbers is 
the minimum of two). 

We define the antecedent Ant as 

ClockAnt & network_signal=F & (During (0,10) S2init=T)&(During (11, 3099) S2init=F)Sc 
(During (0,200)(Slinit=T & S3init=T)) & (During (201,3099)  Slinit=F & S3init=F) & 
(During (1500, 1599) Slinput=sl[2-0] & S2input=s2[2-0] & S3input=s3[2-0]) 

This is the first result proved (here we assume that the output is twice the sensor value agreed on by the 
channels). 

Ant==» 
During (2600, 2649) 

S2output=2*min[s2[2-0],s3[2-0]][3-0] and S3output=2*min[s2[2-0],s3[2-0]][3-0] 
Fault assumption: stuck at fault    :  Slcontnwval = F 

Expressing relationships In the above example, the consequent is too strong in one way — another 
implementation might choose the maximum of two values as the median. In another sense it is too weak, 
since it does not really make explicit the notion of fault tolerance that we want. Here is an alternative 
result — logically weaker than the previous one, but it gives a more meaningful result. The essence of 
this result is: provided the sensor values are within a certain range of each other, then the output of the 
two working channels will be within some acceptable range from the median of all three sensor values. 

Ant  ==>> 
During [(2600, 2649)] if_c well_behaved_sensors then_c well_behaved_output 

Fault assumption: stuck at fault    : Slcontnwval = F 

where well_behaved_sensors is defined to be: 

diff   [max   [si[2-0],s2[2-0],s3[2-0]],min   [si[2-0],s2[2-0],s3[2-0]]]   <  delta[2-0] 

and well_behaved_outputis defined as 



diff   [S2output, (2*median   [si[2-0],s2[2-0],s3[2-0]]) [3-0]]   <   2*delta[2-0] 

Provided the difference between the maximum and the minimum of the sensor values is 5 (for any 3-bit 
number 6), then the output value of S2 (and analogously S3) will be within 26 of the median of the right 
result if SI fails (i.e., if SI fails, S2 and S3 will be almost right). 6 is symboUc - i.e., we verify the 
result for all values of 6 within a certain range. Also note the care that has to be taken in specifying 
the bit-widths of the numbers concerned. Again there is some tedium here and it certainly clutters the 
specification, but it is a detail that needs to be taken care of (since the desired fault-tolerant result is not 
true if 6 is too large, because the system does finite arithmetic). Therefore, the specification precisely 
describes the fault tolerance limitations. 

Triggering faults on input values: The antecedent here is the same as for the stuck at fault. But here, 
we assert that the fault is only triggered for some values of the input. The consequent then shows that if 
the fault is triggered we get one result, while if it is not triggered we see the nominal behaviour ('7' is 
used as the synchronisation signal on the network.) 

Ant    ==>> 
During   [(2600,   2649)] 

S2output  =  if   {sl[2-0]   =7)   then   (2*min   [s2 [2-0],s3 [2-0]]) [3-0] 
else   (2*median   [si [2-0],s2 [2-0],s3 [2-0]]) [3-0] 

Fault  assumption —  Trigger   :   si [2-0]   =  7;     Fault :     Slcontnwval  =  F. 

Triggering faults on state information: Faults can also be triggered on state information. This is 
useful when it is difficult to know when (or even iO a fault should be triggered using only input values or 
time. In this example, we insert an error into SI when it gets into a state in which it is about to broadcast 
on the network (it broadcasts 0, rather the right sensor value). Note we force the same error into the 
control and the monitor node (otherwise it would automatically get extracted from the circuit). 

^^^     ==»     During   [(2600,   2649)]   S2output=   {2*median   [0,s2[2-0],s3[2-0]])[3-0] 

Fault assumption: ^-,  ^     n 
Trigger:   Slcont:Pstinterchange  and  Slcont:Pmyid;   Fault:   Slcontdata=0  and  Slmontdata-0 

Verifying fault-checking components: At a lower level of abstraction some of the circuitry that imple- 
ments the fault tolerance can, of course, be checked for its functional behaviour directly. For example, in 
this circuit the monitor and control nodes check each other. We can show that the circuitry that peri^orms 
this checking will detect errors. This is straight-forward. 

4.3    Computational cost 

To assess the practical worth of using formal verification, we need to consider the computational cost, 
since the computational costs are non-trivial. Of course, one must assess these costs in terms of the costs 
of not finding errors. And it is often possible to verify smaller versions of design at early stages so that 
even if the final verification takes many hours to run, during design and implementation the verification 
algorithm can be used effectively. Nevertheless, computational costs are critical. 

Table 1 shows the cost of verifying the nominal and FT behaviour. The largest circuit verified had 
approximately 10000 state holding components and 150 000 gates. The verification was run on a 500 
MHz Pentium II. Six nominal properties and six FT properties were verified, for four different versions 
of the circuit (varying the datapath bit-width from 4 to 32). For each run, the size of the circuit and the 
cost of the verifications is shown in the table. 

The results show that the cost of verifying the circuit are well within the capacity of the VossProver 
tool (especially if one considers the fact the figures are inflated by the overheads of loading the system, 
building the circuit etc, which usually only has to be done once a session). The cost of verification 
appears to grow more quickly than the number of gates (but still logarithmic in the size of the state 
space, though a more through analysis is needed here). 
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Bit-width 4 8 16 32 
Number of gates 26000 50000 85000 150000 
Cost for nominal properties (s) 63 85 128 308 
Cost for FT properties (s) 19 31 69 275 

Table 1: Cost of verification of nominal and FT properties in seconds 

Human cost: Specification requires significant human insight. The verification of all results shown 
here is completely automatic (though this is not something that we can expect at this stage in general). 

5   Conclusion 

This paper has examined the use of formal methods in verifying fault-tolerant systems' designs, present- 
ing an approach to specifying and verifying fault-tolerant systems. The logic used also allows a range 
of fault conditions to be expressed. These fault conditions are given as trigger-action pairs: the trig- 
ger indicates when a fault will occur and the action says what type of fault occurs. Using the ideas of 
saboteurs [1], the method of symbolic trajectory evaluation can be generalised to be able to verify FT 
properties. 

A case study was performed to evaluate the proposed approach. Overall, the case study shows that 
the approach is successful. The nominal behaviour of the circuit was verified, and then a range of FT 
properties were examined including: stuck at faults; faults triggered by input values; and faults triggered 
by state conditions. 

In addition, the expected behaviour could be modelled exactly (e.g., the output is x) or approxiinately 
(e.g., the output is within a certain range). It is also possible to verify directly that certain fault-monitoring 
circuitry performs its task. The experimental results also showed that the computational costs of STE 
were quite reasonable. 

Future research:    There are a number of issues for future research: 
Language for specifying fault tolerance: The case study explored the use of the non-temporal 

fragment of TL for specifying the trigger-action pairs. This proved capable of expressing a range of 
different behaviour. We need to do more case studies to get experience in what type of FT properties 
need to be proved, in order to find where the limits are. It appears that allowing temporal operators in 
both triggers and actions would be useful, and the framework of using observers and saboteurs should be 
able to cope with the extension. One particular anticipated difficulty is the specification of both absolute 
and relative times in the fault specification. 

Use for determining fault tolerance coverage: One interesting possibility is to generalise the spec- 
ification of the fault and/or antecedent, expecting the verification to fail. The point of this is that the 
information given by the VossProver explaining why the verification failed could be used to determine 
fault tolerance coverage. 

Compositional theory: A very important technique to overcome the state explosion problem that 
bedevils symbolic model checking is the use of compositionality. STE has a simple but successful 
compositional theory that has been implemented in the VossProver [8]. If we wish to use STE to deal 
with fault tolerance we need to extend the theory for combining assertions to a theory that deals with 
combining f-assertions. 

Improving the performance of algorithms: And, of course, all algorithms tan benefit from improve- 
ment. Even though in the case study chosen the STE algorithm could easily prove the required assertions 
and f-assertions, the insatiable demands for memory and CPU cycles needs to be met.... 
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Motivation 

STE ckt A C 

\ 
(theorem proving)   => OKAY? 

/ SMC ckt (G(r->F a)) 

• Use the tool most suited for each sub-task 
• Express and verify properties beyond the reach of 

a single model checking run 

Page 3 

Our approach 

• Combine STE and SMC in a higher order logic 
theorem prover 
- A shallow embedding enables semantic reasoning about 

verification results 

• Employ reflection to 
- Make links between model checking and higher order 

logic exp/Zcrt axioms rather than implicit in the metalogic 
- Enable a lightweight, logically-coherent bookkeeping 

system for model-checking runs 
- Make calls to model checkers explicit in proofs 
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Logical architecture 
Higher order logic 

[ ckt   1= p AND   c 

j ^    ^^    \ 
t ckt   1= p ckt   1= p ~> c 

I SMC_ax   f 1^ cLSTE_ax 

i 3h.   SMC  ckt h «p»      3h.c  0   (cLSTE p h ckt) 

i ^ ^ I i bookkeepi.ng c 

t 
SMC  ckt h «p» cLSTE p h ckt 

'  '"f 

Forte 

Pages 

Physical architecture 

Higher order logic 

SMC  ckt h «p» cLSTE p h  ckt 

Forte 

\    / 

=0:0-0- 
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LTL 

• A subset of Intel's ForSpec Temporal Language 

LTL f   ::=   value n n € Nd 
flAf2 

NEXTf 
f1 UNTIL f2 
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LTL semantics 

• state (assigning each node a Boolean value) 
St = Nd -> bool 

• Trace (a sequence of states) 

Tr = nat -> (Nd -^ bool) 

• Satisfaction 
_ sat _ :: (nat, Tr) -^ LTL -> bool 

• Examples: 

i,a sat [value n] 

\,o sat [f1 A f2] 
i,a sat [NEXTf] 

iff  ai n 
iff   i.g sat fm and la sat \f2] 

iff   i+1.asat[f| 
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LTL in higher order logic 

• LTL operators are shallowly embedded as 
functions of type nat -> Tr -> bool 

• Example: 

i,a sat lf1 A f2]      iff \,a sat [fl] and i.a sat [f2] 

def 
p   &&  q = 

\t.\s.    (p  t  s)   AND   (q  t  s); 

Pages 

LTL in higher order logic 

• A circuit satisfies a property iff all its traces do 
• We can treat in_L  ::   Tr->f sm->bool as an 

uninterpreted predicate for our purpose 

ckt   \=''f = 
Forall  s.    (s  in L ckt)   ==> p  0  s; 
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Reasoning in LTL 

NEXT_and = 
|-  Forall p.   Forall q. 

NEXT   (p   &&   q) 

(NEXT p)    &&   (NEXT  q) 

time_shift = 
|- Forall ckt. Forall p. 

(ckt 1= p) 

(ckt   1= ALWAYS p) 
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Logical architecture 
Higher order logic 

ckt 1= p AND c 

LTL 

ckt 1= p     ckt 1= p ~> c 

SMC ax ( 1 cLSTE ax 

; -.  1^ 

; 
3h. SMC ckt h «p»  3h.c 0 (cLSTE p h ckt) j 

\ bookkeeping     C i 

SMC ckt h «p» cLSTE p h ckt 

Forte 
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SMC 

SMC ckt usefuls frees «p» 

- constructs a specification automaton from thie LTL 
property p using standard tableau construction, runs the 
model checker and returns T/F 

- usefuls and frees are hints for pruning the circuit 

- Reflection: «p» means "the syntax of p" 
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Interface to SMC, using reflection 

SMC_ax "= 
|- Forall ckt. Forall p. 

(WF «p») AND 
(Exists usefuls. Exists frees. 

SMC ckt usefuls frees «p») 

(ckt 1= p) 
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Conventional solution 

• Interface to SMC is implicit: 
- A metafunction ink_SMC_ax takes the circuit, pruning info, 

and property as arguments, calls SMC, and generates the 
appropriate axiom if SMC succeeds 

mk SMC ax ckt   []    []   «spec» 

-   (ckt   1= spec) 

Pago 15 

STE 

cLSTE asstimp hints  ckt 
- provides a trace-based interface to standard STE 
- cLSTE returns a trace (int->string->bool) generated 

under assumption asm that can be used to check 
satisfaction of a bounded LTL formula 

cLSTE_ax "= 
|- Forall ckt. Forall asm. Forall p. 

(Exists hints. 
p 0 (cLSTE asm hints ckt)) 

==> 
(ckt 1= (asm --> p)) 
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Example circuit 

a  T 

b  -r 

vld 

elk 
rst 

itHcKS ZZTrS-Tpup 

qclk 
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Helpful definitions 

• It is convenient to introduce these definitions 

let 
let 

falling c = c  && 
rising     c =   (!   c) 

NEXT   (!   c) ; 
&& NEXT  c; 

letrec repeat 0  f p = 
/\         repeat n  f p = 

P 
f   (repeat   (n- -1) f P); 

let weak mutex a b = 
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Control property 
let ctl_Epec = 

(ALWAYS (elk -= ! (NEXT elk))) SS 
(ALWAYS (falling elk —> 

Heak_mutex vld (repeat 2 NEXT vld))) 

—> 
ALWAYS ( 

(falling elk) &fi (value "rst") —> 
ALWAYS ( 

(falling elk S£ vld S& 
! (value "rst") && repeat 2 NEXT (! (value "rst"))) 

—> 
(repeat 2 NEXT pup) £S 
(repeat 4 NEXT pup) 

) 
); 

vld 

elk 
rst 

itHoH I ^pLTpup 

qclk 
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Proving the control property 

S Evaluation 

I - WF «ctl_spec» AND 
SMC ckt   ["c2c"]    []   «ctl_spec» 

V'bookkeeping" 

I- WF «ctl_spec» AND 
(Exists usefuls. Exists frees. 

SMC ckt usefuls frees «ctl_spec») 

SMC ax 
\ 

ckt 1= ctl_spec 

Page 20 
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Datapath property 

pup- 
let dp_spec = 

(ALWAYS (elk ~= ! (NEXT elk)))  // dp_spec_a 
—> 
ALWAYS ( // dp_spec_c 

(falling elk && 
repeat 2 NEXT pup &£ repeat 4 NEXT pup) 
—> 
( (repeat 5 NEXT c) ~= ! ( (NEXT a) | | (NEXT b) ) ) ) 
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Proving the datapath property 

Evaluation 
/ 

I -  dp_spec_c  0 
(cLSTE  dp  spec  a  dp hints  ckt) 

"bookkeeping ■7 
I - Exists hints. 

dp_spec_c 0 
(cLSTE dp_spec_a hints ckt) 

cLSTE_ax < 

ckt   1= dp  spec a  -> dp_spec_c 

Page 22 
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Combined property 

let top_spec = 

(ALWAYS (elk ~= ! (NEXT elk))) && 

(ALWAYS (falling elk —> 
weak_mutex vld (repeat 2 NEXT vld))) 

—> 
ALWAYS ( 

(falling elk) &fi (value "rst") 

—> 
ALWAYS ( 

(falling elk && vld SS 
!(value "rst") &S repeat 2 NEXT (!(value "rst"))) 

~> 
( (repeat  5 NEXT  c)   ~=   !    ((NEXT  a)    I I    (NEXT b) ) ) )) ; 
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Proving tiie combined property 

I -  ckt   I= ctl  spec 
-  ckt   1= dp_spec_a 

-> dp_spec_c 

Reasoning 
inLTL 

-  ckt   I= top spec 

Page 24 
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Summary 

STE, SMC are combined within a higlier order logic 
theorem prover with reflection 
- Calls to model checkers are explicit in proofs 

- Including directives, hints, etc 
- Theorem prover Is used as a bookkeeping tool to manage 

model checking runs 
- Abstracting away directives, hints 
- Extensions can handle simple reasoning: case-splitting, 

assume-guarantee 
- Explicit links between STE, SMC and specification logic 
- Spec logic is shallowly embedded in higher order logic 

- Full pov\/er of the theorem prover is available for complex 
reasoning 

Page 25 
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